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Accuracy Assessment of Land Cover Change Detection

1 . 0 E X E C U T I V E S U M M A R Y

Effective management of coastal resources requires knowledge of change in
coastal land cover with national scope, regional continuity, local reliability, and
reasonable repeat cycles. National Oceanic and Atmospheric Aadministration's
Coastal Ocean Program, through its Coastal Change Analysis Program, C-CAP, has
developed a methodology and is actively producing retrospective and progressive
regional land cover change databases from remotely sensed data for monitoring
coastal land cover on a repeat cycle of 3 to 5 years. C-CAP has identified accuracy
assessment as a key constraint to the full development and application of these
regional land cover change databases. Determination of the level of accuracy of these
change detection databases is essential to refine change detection methodologies
and to apply the data appropriately. Land cover change databases require, therefore,
the collection of reference data not only for. calibration but also for accuracy
assessment purposes. Quantification of the degree of error and determination of the
level of statistical significance of land cover change in regional land cover change
databases is required. Unfortunately, the remote sensing and statistical literature has
not provided guidelines for land cover change detection and accuracy assessment
appropriate for areas of regional extent.

The objective of this report is to recommend a procedure to NOAA's C-CAP for
assessing the accuracy of land cover change detection datasets derived from remotely
sensed data. This paper focuses on the classification, mapping and verification of the
reported extent of coastal wetlands, adjacent uplands, and submerghed lands. The
primary data are satellite imagery (for wetlands and uplands), aerial photography (for
submerged aquatic vegetation) and ancillary field data. Land cover classes within the
classification scheme are exhaustive, mutually exclusive, and can be identified with
remotely-sensed data combined with site observations. The recommended
procedure Is the result of four workshops held during 1993 and attended
by a panel of experts In spatial statistics, remote sensing, environmental
monitoring, and geographic Information systems (GIS).

Two change detection algorithms are recommended to C-CAP: post
classification comparisons and a procedure which utilize a binary change masking.
Post classification change detection is considered suitable for both photo interpretation
and spectral imagery while the binary change mask method is suitable for spectral
imagery only. Post classification change detection involves complete classification of
the remotely sensed data at two time periods. A comparison of land cover type is then
conducted on a pixel by pixel basis to identify areas of change. The binary change
mask compares spectral data directly and identifies locations of spectral change
between the two discrete time periods. The base time period is classified completely



but only the locations of change are classified in the other time period for cost saving
p u r p o s e .

This report differentiates the concepts of error and generalization and then deals
exclusively with error. Both error and generalization are inconsistencies between the
subject area and the database. Inconsistencies that are beyond the temporal, spatial
and categorical resolution of the database are attributable to generalization and not to
error. C-CAP has in its Guidance for Regional Implementation, defined levels of

^ generalization in the database. These were approved by consensus In five regional
workshops and were determined to be necessary and acceptable concessions to
achieve the regionally synoptic data essential for short term (3-5 year) change
detection. The degree of generalization inherent in the database, therefore, may or
may not be acceptable to all potential users of the databases.

Assessing the error of regional change detection databases requires attention tothe classification system, the nature of land cover and land cover change data,
problems inherent to regional databases, and selection of error evaluation algorithms.
Existing land cover databases may not be considered as suitable reference data for
calibration or accuracy assessment due to not being synchronous and contemporary
with C-CAP data, not addressing the same classification scheme, and not having a
measured level of reliability. Accuracy assessment of regional change detection
databases is a prime illustration that methods for remote sensing contemporary in
analysis of an area of local extent do not apply for areas of regional extent or for past
and multiple periods of time.

Errors of many types enter the database during acquisition, processing, analysis
and conversioii of the data. In addition, errors occur as a result of error assessment
and final product presentation. Systematic or random and positional or attribute errors

^ can occur. Some positional errors, such as registration error, can be estimated with
reference to well defined and accurately positioned features visible in the database.
Attribute error is qualitative and can be detected by comparison with local observation
of land cover categories. Errors in change detection databases include errors of
omission (change occurred but was not detected) and commission (change was

^ detected but did not occur). Assessment of change error requires accurate and
independent data for local categorization of land cover at both times of remote
observa t ion .

In this report, certain statistical procedures appropriate to the unique problem of
^ accuracy assessment of regional land cover change databases are discussed. Theprocedures include sampling strategies, data processing, presentation approaches

and formulae to compute diagnostic statistics. For change detection accuracy
assessment traditional sampling techniques cannot usually be employed This is
largely due to the fact that the change polygons cover only a small portion of the

I original image and would not be well detected with, say, random sampling. Because



of these limitations, partitioning of the image into two strata - Change and No
Change is proposed. The (predicted) No Change Stratum by far is the largest stratum
generally encompassing over 90% of the original image, or thematic map. The^ sampling of these two components can be done following standard techniques such as
random, stratified random and systematic unaligned designs provided the second case
is not a truly rare event (say <10%). The real advantage of partitioning the image is
that different types and intensities of inventories on these two strata may be
c o n d u c t e d .

I Creation of a reference data set for accuracy assessment depends upon
accurate location of stratified random sample locations and accurate local data for the

j "from" and "to" categories at the location of change. Global Positioning System
(GPS) technology with real time differential correction is the method of choice for

; positioning in the field. Once located, an objective procedure for observing features
i and recording data relevant to identification of the land cover categories and types of
j change is conducted with the aid of a detailed data recording form. Such forms need

to be generated regionally.

Generation of an error matrix and performance of a KAPPA analysis are
j recommended for quantification and interpretation of change detection errors and

testing for statistical significance of change. The error matrix is an excellent starting
point for a number of descriptive and analytical statistical techniques. The matrix
identifies errors of omission and commission and the frequency of all of the possible
combinations of "from" and "to" categories. Error tabulation in the change matrix is
recommended for error summation and for discrete multivariate techniques. The
change detection error matrix has the same characteristics as the traditional
classification error matrix but will assess errors in change between time periods and
not simply errors in a single classification. The KAPPA analysis is a useful measure of

^ agreement or accuracy and provides a test for statistical significance of observed
changes.

i i i



2 . 0 I N T R O D U C T I O N

One of the "grand challenges" for scientists and policy makers in the 1990's is to
achieve a deeper understanding of global processes with particular attention to human
interactions (Office of Science and Technology Policy, Executive Office of the
President). In the current decade, global environmental change has become a major
national and intemational policy issue. Regional change has been recognized as an
important aspect of resource management and environmental restoration. Coastal
habitats are crucial resources in jeopardy in the United States and throughout the
world. Many of the world's greatest cities (e.g. Amsterdam, Boston, London, San
Francisco, Tokyo, Washington D.C., etc.) threaten wetlands by virtue of being built on
rivers, estuaries, and coastal areas. The impetus to measure change in coastal land
cover results from the high environmental and economic value of vegetated uplands,
wetlands, and submerged land. There is widespread consensus among citizens,
resources managers, and scientists that unacceptable losses are occurring. Policy
and management decisions demand regionally comprehensive, rigorous data on
changes in the quantity, quality, and distribution of coastal resources.

For more than a century land cover, the visible surface of the earth, has been
recognized as the principal indicator of changes associated with human activity and
with natural processes that alter physical and cultural environments (Hartshome, 1939;
Stamp, 1948). Land cover change databases, quantitatively Indicating differences
from one time period to another at a determined level of accuracy, are essential to the
scientific analysis and management of environmental processes. Unfortunately,
previous monotemporal and multitemporal programs based on field collected or
remotely sensed data have experienced mixed success. Since the 1930's remote
sensing, first from aircraft and later from satellites, has been the principal means by
which land cover is observed, categorized, recorded, and quantified (Khorram et al.,
1991; Dobson et. al., 1993). Remote sensing provides the most feasible approach to
regional land cover change detection. Thematic maps or images obtained at different
times can be compared to identify the location, extent, and type of change. Remote
sensing products consist of analog or digital images that may be expressed as static
photographs, maps, or digital databases for a single time period or compared to show
change between two or more times.

The accuracy of land cover maps produced from remotely sensed data is an
essential element required by both environmental researchers and managers. This
need has been recognized by the remote sensing community for over a decade (Hord
and Brooner, 1976; Van Genderen and Lock, 1977; Ginevan, 1979; Rosenfield and
Malley, 1980; Congalton and Mead, 1983; Czaplewski and Catts, 1992; Congalton,
1991; Khorram et. al., 1992a; Goodchild et. al., 1992; Ferguson et al., 1993).
Techniques developed for accuracy assessment of Interpretations of aerial
photographs have generally been extended to the evaluation of land cover data sets
derived from non-photographic sensors (Hellden and Stern, 1980; Roiler and Visser,



1980; Khorram et al., 1992b). Several studies have Incorporated more sophisticated
statistical procedures in the analysis of error matrices compiled for monotemporal land
cover data sets generated from remotely sensed digital data (Congalton et al., 1983;
Aronoff, 1985; Congalton, 1988). In dealing with change detection data sets, research
has shown that, in addition to factors traditionally held to affect accuracy assessment of
monotemporal datasets, one must also consider factors such as image registration and
boundary problems (Wickware and Howarth, 1981; Haley, 1985; Corr et al., 1989;
Singh, 1989).

NOAA's Coastal Ocean Program, through its Coastal Change
Analysis Program (C-CAP) has developed protocols for regional land
cover change analysis, developed a Coastal Land Cover Classification
System (CLCCS) suitable for use with sateillte data and aerial

^ photography, and has identified accuracy assessment as a key factor in
large-area change analysis methodology.

• The purpose of the C-CAP project is to build a digital data base that, when
\ integrated with other data within a GIS, may ultimately enable scientists to link
i development in the coastal regions to the ecological and economic productivity of the
j coastal and the marine environment. To accomplish this, C-CAP has deveioped a

comprehensive, nationally standardized and locally managed or implemented,
information system for land cover and habitat change in the coastal regions of the
United States (Dobson et al., 1993). The system will emphasize a geographic

m approach including the use of geographic information systems (GIS), field data, and
remotely sensed data. Data from satellite scanners, and aerial photography will be
interpreted and classified, assessed for change, and for accuracy of the change data
base. Output products will include: (I) spatially registered digital images, (2) hardcopy
maps, and (3) tabular summaries. However, current remote sensing literature suggests

, that techniques of change detection are well developed for areas of local extent,
poorly defined for areas of regional extent, and non-existent for areas of continental or
global extent. This report focuses on accuracy assessment for large-area
static and change detection databases developed from satellite remote
sensing of uplands and wetlands and from aerial photographs of

^ ; submerged land. Readers should refer to the "Guidelines for Regional
! Implementation" (Dobson et al., 1993 and Klemas et al., 1993) for C-CAP definitions of
i land cover categories and more detailed descriptions of methods pertinent to the
I development of change data bases and accuracy assessment techniques. For satellite

data, land cover change will be detected in a pixel by pixel comparison from different
^ I time periods. For photographic data, change will be detected in a post classification

comparison of the spatial data. The resulting information will enhance conceptual and
! predictive models and support coastal resource policy analysis.

Currently, researchers and resource managers using remotely sensed data for
^ mapping and monitoring change in land cover rely on ad hoc approaches to accuracy
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assessment. Many of the techniques employed are based directly on approaches
developed for one-time inventories or for more simplistic technologies or data types.
Little attention has given to establishing step-by-step methodologies or standards for
data accuracy in change detection and reference data sets. Most research has
focused on methodologies for producing the change detection data sets, and, while
data accuracies are reported for the different methodologies, little or no detail Is
reported on how the reference data for accuracy assessment were derived.

NOAA C-CAP Is a cooperative interagency and state federal effort (Cross and
Thomas, 1992), which is currently developing regional databases on land cover
change for coastal regions of the United States. The change detection and analysis
cycle is primarily based on a regular cycle ranging from one to five years may vary
according to the rate and magnitude of change in each region. The broad land cover
categories of Interest in the paper are composed of coastal wetlands, adjacent
uplands, and submerged lands. The primary data are satellite imagery (for wetlands
and uplands), aerial photography (for submerged aquatic vegetation) and necessary
field data. The recommended procedure reported here is the result of four
workshops held during 1993 attended by the authors.

3 . 0 A C C U R A C Y A S S E S S M E N T I S S U E S

Assessing the accuracy of change detection products derived from remotely
sensed data requires careful attention to several Issues, including: 1) the land cover
classification system, 2) the nature of land cover change, 3) problems specific to
regional land cover change databases, 4) creation of reference databases, and 5)
selection of error evaluation algorithms.

3.1 The Coastal Land Cover Classification System

Change analysis begins with the classification system. The classification
system brings with it a necessity for arbitrary subdivision of continue into categories
and polygons with discrete boundaries. It also represents a subjective description of
the environment, as we see it. Change detection Is relative to the classification system
being used. Thus, it is vital that the classification system be consistently applied to all
data sets undergoing change analysis. It is also important that the classification
system being used have classes that are exhaustive and mutually exclusive. Just as
all measurements have some error, there will be some inconsistency in application of
the classification system; there will be some overlap between classes; and, there will
be some classes that are not anticipated by the taxonomic system. Tests for
consistency, independence and completeness can be made, but, for the purposes of
making practical recommendations to C-CAP on accuracy assessment for change
detection, we assume that the classification system is valid and that It is uniformly
applied to all remote and in situ data sets.
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To satisfy the nationwide coastal focus of the C-CAP information system, the
CLCCS for coastal uplands, wetlands, and submerged ecosystems was developed to
be hierarchical, respect ecological relationships, optimize the potential for
discrimination by remote sensors, be usable with GIS, and be compatible with other
data bases (Kiemas et al., 1993; Dobson et al., 1993). CLCCS emphasizes wetlands
and photic deep water habitats, critical habitats which support the living marine
organisms (Wilen, 1990). However, upland categories also are included because
upland land cover and land use influence water quality and the distribution and
productivity of wetlands and submersed habitat within the photic zone.

f

The CLCCS includes three Level I superclasses; 1.0 Uplands, 2.0 Wetlands,
and 3.0 Water and Submerged Lands. These superclasses are broken down into

! classes and subclasses at Level II and Level III, respectively. The CLCCS focuses on
f both upland and coastal wetland land cover which can be derived primarily from

remotely sensed information and then used to produce wetland ecosystem change
information. While the categories of the CLCCS, discussed briefly below, are
generally compatible with Anderson et al. (1976) and Cowardin et al. (1979), system
definitions, some modifications were necessary to reconcile inconsistencies between

^ Anderson and Cowardin, to move toward land cover and away from land use
categories, and to accommodate remotely sensed data and detailed definitions of all
classes and subclasses are presented In the C-CAP protocol document (Dobson et
al., 1993).

3 . 1 . 1 U p l a n d s

The definitions of Uplands classes and subclasses are similar to those In Anderson
et al. (1976) and USGS Technical Instructions (1992). The Uplands superclass
consists of seven classes: Developed Land, Cultivated Land, Grassland, Woody Land,
Bare Land, Tundra, and Snow/Ice. Upland classes were modified from Level I classes
in the USGS Land Use/Land Cover Classification System (Anderson et al., 1976;
USGS, 1992). For detailed information see Kiemas et al., (1993).

3 . 1 . 2 W e t l a n d s

According to the Cowardin classification system, wetlands are lands where
ground water saturation is the dominant factor determining soil development and the
types of plant and animal communities living In the soil and on its surface. The single
feature that all wetlands share is soil or substrate that is at least periodically saturated
with or covered by water.

The upland limit of wetland is designated as: (1) the boundary between land
with predominantly hydrophytic cover and land with predominately mesophytic or
xerophytic cover; (2) the boundary between soil that is predominantly hydric and soil
that is predominantly nonhydric; or (3) in the case of the wetlands without vegetation



or soil, the boundary between land that is flooded or saturated at some time during the
growing season each year and land that is not (Cowardin et at., 1979). The majority of
all wetlands are vegetated and are found on soil.

In the CLCCS, "Wetland" includes all areas considered wetland by Cowardin et
al., (1979), except for wetland Bottoms, wetland Reefs, wetland Aquatic Beds, and
Nonpersistent Emergent Wetlands. The class breakdown under Wetlands was
adopted from the Cowardin system. At Level 11, CLCCS employs certain Cowardin
classes (e.g.. Rocky Shore, Unconsolidated Shore, Emergent Wetland) or groups of
the Cowardin classes (e.g.. Woody Wetland composed of Scrub-Shrub and Forested
Wetland), in combination with Cowardin systems (i.e.. Marine, Estuarine, Riverine,
Lacustrine, Palustrine). Thus a typical Level 11 class in the CLCCS might be Palustrine
Woody Wetland.

Salinity displays a horizontal gradient in marshes typical of coastal plain
estuaries. This is evident not only through the direct measurement of salinity but in the
horizontal distribution of marsh plants (Daiber, 1986). Therefore, Estuarine Emergent
Wetlands are partitioned into Haline (Salt) and Mixohaline (Brackish) Marshes.
CLCCS uses the definitions shown in the Cowardin system.

3.1.3 Water and Submerged Land

All areas of open water are assigned to the Superclass Water and Submerged
Land. This superclass includes the open water of both wetland and deepwater
habitats of the Cowardin et al. (1979) classification, i.e. with <30% cover of trees,
shrubs, persistent emergency plants, emergent mosses, or lichens. The Superclass is
comprised of six Level 11 classes, of which two are the current emphasis of C-CAP
monitoring: Water and Marine/Estuarine Aquatic Bed. The class Water includes
Cowardin et al.'s (1979) Rock Bottom, Unconsolidated Bottom, and Nonpersistent
Emergent Wetlands, as well as undetected Reefs and Aquatic Beds. Most C-CAP
products will not subdivide water into types. C-CAP recognizes the subclasses:
Marine/Estuarine, Riverine, Lacustrine, Palustrine, of the class Water. However, the C-
CAP system identifies the subclass data as optional in the database. Having the water
subclasses also makes the C-CAP scheme more compatible with the Cowardin et al.
(1979) system.

The class Marine/Estuarine Aquatic Bed includes two subclasses. The current
C-CAP focus is the Subclass: Rooted Vascular (SRV for submersed rooted vascular)
which, as an option in the data base, is subdivided into High Salinity (25 ppt) and Low
Salinity (< 5 ppt). At >5 ppt salinity, habitats defined by the occurrence of true
seagrasses are separated from those at <5 ppt, defined by submersed grasses and
forbs that tolerate or require low salinity. The exception is euryhaline grasses (e.g.
Rupla maritime) which thrive above and below 5 ppt. Aquatic beds above and below 5
ppt are very different in terms of flora and fauna but both are important. High Salinity
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includes mesosaline, poiysaiine, eusaline, and hypersaline salinity categories of
Cowardin et al. (1979). Low Salinity includes oligosaline and fresh categories. The
Subclass: Algal is optional in the data base awaiting establishment of guidelines for
remote sensing of this diverse and regionally variable resource.

3.2 The Nature of Land Cover Change

Many kinds of changes occur on the surface of the Earth, but this report is
concemed exclusively with those that appear as changes of land cover. While some
of these are caused by smoothly changing underlying environmental conditions, such
as global climate regimes or increased salinity, others reflect more or less catastrophic
events, such as flooding, urban development, or infilling. When detected and
recorded from space, change of land cover may show a variety of geographic
signatures. Some changes may affect entire areas uniformly and instantaneously,
while others may take the form of slow advances or retreats of boundaries between
land cover classes, and other changes may have very complex spatial textures.

As discussed by Jensen and Toll (1982) and Chrisman (1993), the limitations of
the above definition include: 1) change through time could be gradual due to slow
trends, or abrupt due to catastrophic or episodal events and difficult to assess with
arbitrarily timed "snapshots" of remote data; 2) change in categories does not
elucidate the process causing the change; 3) change in category over time is
confounded with error at both of the two times of observation.

Characterization of change involves establishment of the "from" and "to"
categories for a location on the map. It also involves establishing the change in a
spatial context. Change at a specific location may be qualitative, from one category to
another. In a spatial context, change can be of several types:

1 ) a polygon becomes a different land cover category

2) a polygon expands, shrinks or changes shape

3) a polygon shifts position

4) a polygon fragments or proximal polygons of the same type coalesce.

Significance of change from an environmental management and research
perspective is a function of the relative values of the "to" and "from" categories and of
the implications the change has regarding underlying processes and predictions of
future changes. The significance of change is coupled to the spatial context of the
change because in different places the same land cover category may have different
values and changes, when placed in a spatial context, can be powerful sources of
testable hypotheses.
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Detectability of change is a function of the nature of the "from" and "to"
categories and the spatial extent and context of the change. If a "from" category is
broadly defined in terms of spectral distribution, substantial spectral change may occur
without a change in category. This is particularly troublesome if the spectral
distributions of two land cover categories overlap. At what point does one switch a
land cover category when the spectral data is intermediate between the "from" and
potential "to" category? Change over a large spatial extent is less likely to be missedthan charige over a small spatial extent. Regionally related changes of the same type
are less likely to be ignored but are likely to be partitioned between "error" and
"change".

One major task in change detection involves separating the apparent
differences into those likely to arise from error sources and those produced by real
change processes. While errors are both positional and attribute, change processes
are also of the same two forms. Some changes are incremental and connected in
space, as when a polygon border moves. But such boundary movement may be
indistinguishable from positional error. A change of greatest interest to managementand research is one with a specific direction, explicable by environmental forces at
work. Positional errors or changes due to cyclic interval forces may weave back and
forth in a more or less random manner. A test based on the runs test was proposed by
Goodchild (1978) that might help in separating these two forms in some cases.

Change may also convert large objects in a more instantaneous manner.These changes may be distinguishable from some classification errors by looking at
the distance between the changes in the spectral space of the remote sensing images,
by looking at the likelihood of the environmental processes which could cause the
apparent change, or by examining the historical record of previous changes.
3.3 Problems Specific to Regional Land Cover Change Databases

Maps, whether analog or digital, are models of features found on the Earth'ssurface. Map accuracies vary depending on the methods and care used in producing
them (Mailing, 1989). The thematic accuracy of a land cover map is constrained by
several factors, including the land cover classification scheme, quality of data sources,
size of minimum detection and minimum mapping units, scale of presentation, and
expertise of the photointerpreters or image analysts, and cartographers producing the
map. As with all maps, land cover maps contain errors that should be quantified
before they can be used with confidence.

Congalton (1991) suggests that until recently the idea of assessing theclassification accuracy of remotely sensed data was treated more as an after-thought
than as an integral part of any project. In fact, throughout the 1980's, studies would
simply report a single number to express the accuracy of a classification. In addition,
many assessments were conducted using the same data set as was used to train the
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classifier. This training and testing on the same data set obviously results in
overestimates of classification accuracy.

^ Several methods have been used for accuracy assessment of land cover
mapping results based on remotely sensed data. Rosenfield (1980) proposed the use
of analysis of variance techniques for accuracy assessment. However, violation of the
normal theory assumption and independence assumption when applying this
technique to remotely sensed data has limited its application. Aronoff (1985)
suggested the use of a minimum accuracy value as an index of classification
accuracy. This approach is based on the binomial distribution of the data and is
therefore appropriate for remotely sensed data. The major disadvantage of this
approach is that it is limited to a single overall accuracy value rather than using the
entire error matrix. However, it is useful in that this index does express statistically the
uncertainty involved in any accuracy assessment. Skidmore and Turner (1989) have
begun work on techniques for assessing error as it accumulates through many spatial
layers of information In a GIS, including remotely sensed data. These techniques
have included using a line sampling method f̂or acguracy assessment as well as
probability theory to accumulate error from layer to layer.

The methods mentioned above focus on the attribute accuracy of
r classifications. There is also need to consider the positional accuracy of remote

sensing at least in the process of registration of images. The average error in• identifying well-defined points is often below the pixel size using modem sensors, but
^ . the registration of images is not the end of spatial error effects that will influencej change detection. While both positional and attribute errors occur in the processing of

remotely sensed information, the positional accuracy is often considered to be
5 separate from the classification accuracy. Many procedures for assessing

classification accuracy explicitly avoid samples near boundaries where a positional
^ • effect might be detected. Some research (Goodchild and Dubuc, 1987; Chrisman,1989; Chrisman and Lester, 1991; Goodchild et al., 1992) has attempted to model and

test these errors in a more integrated manner.

I 3.3.1 Large Area
i Current guidance does not work well for large areas. There is an underlying
• assumption that reference data of higher accuracy can be developed through field
I work and/or aerial photographic interpretation. Differences among individuals are
! well documented (McGwire, 1992), but they are usually ignored when the area is

small enough to be covered by a single individual and revisited to resolve
disagreements. For large areas, variability among observers is a major concem.
Field verification in the Chesapeake Bay (Burgess et al., 1991, Shapiro, 1993), for
example, has involved more than 50 individuals from at least two state govemments,
three universities and six separate federal agencies. All these individuals have spent
time in the field, but some have relied more heaviiy than others on aerial photographs
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which introduce yet another perceptual filter. In addition, there is an assumption that
training of field workers can overcome the problem of observer variability. Our
experience suggests that the instruction set required to ensure consistency over large
areas, large numbers of classes, and large teams of field workers greatly exceeds the
resources available in most projects and the tolerance of even the most committed
analysts.

3.3.2 Large Number of Classes in Matrix

The potential number of categories ("no change," "from," and "to") in a change
database for two time periods is the square of the number in a single time period.
Conceptually, each "from" and "to" category can be treated as a separate category for
sampling. This creates a very large number of potential classes which must be
sampled when performing error evaluation.

3.3.3 Impossibility of Field Verification for Past Time Periods

Current methods do not work well for past time periods. There is an underlying
assumption that reference data of higher accuracy can be developed from aerial
photographs. In reality, contemporaneous (same year, same season) photographsare seldom available, and differences of a year or more can cause great uncertainty in
continuous change (e.g. forest regrowth from clear-cutting) or abrupt change (e.g.
precise date of construction). Generally, data derived through aerial photographic
interpretation are not always more reliable than data derived through classification of
digital satellite data. The two approaches result in different types of error because
each has its strengths and weaknesses. Many analysts feel more comfortable with
aerial photographs because the images appear more like the visual images familiar to
human observers in the field. However, a photograph actually contains less attribute
information than a multispectral scanner image due to the large number of spectral
bands, several extending beyond the visual spectrum, in the digital image. The
perception of greater information in the photograph comes from the higher spatial
resolution of most photographs and the habit of employing spatial pattern recognition
to interpret features. Much of the recent improvement in satellite classification has
come because the image processing systems have become interactive enough to
support that same kind of spatial pattem recognition by the human analyst viewing a
workstation screen. The finer resolution of many aerial photographs permits the
photointerpreter to recognize patterns at a more human scale, but the 30 m X 30 m
resolution of Thematic Mapper data is also sufficient for many pattem recognition
tasks. For example, this resolution is generally adequate and may even be preferred
for the task of ensuring that most marshes fall in the proper hydrologic relationship to
strearns and waterbodies. Digital satellite data also can offer a significant advantage
in positional accuracy and precision.
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3.3.4 Fuzzy, Continuous Phenomena

Current methods treat land cover categories as discrete sets, but change
detection accentuates the fact that land cover is spatially, temporally, and categorically
continuous (Foody, 1992). Land cover change can be distinct as when a forest is cut,
the land is graded, and buildings are constructed. Such changes are widespread and
also of interest to scientists and policy makers because they substantially alter
physical, economic, and cultural conditions on a relatively long-term basis. More
common, however, are the gradual changes that occur at the indistinct boundaries of
polygons, at the imprecise definitional boundaries among classes, and in the temporal
waxing and waning of key indicators (e.g. moisture, vegetation, permafrost). These
changes occur naturally in response to numerous physical factors (e.g. weather,
erosion, sedimentation) and may be of little consequence in a healthy ecosystem
where growth is equivalent to decline. In contrast, they may be crucial indicators when
basic conditions alter, as anticipated in global climate change. For change detection,
per se, it is difficult to define an objective boundary distinguishing between minor and
major shifts along the land cover continuum. New methods will have to be developed
for accuracy assessment of land cover change databases, and the guidance must
explicitly address the fuzziness of spatial, temporal, and categorical dimensions as
well as the fuzzy perceptions of observers.

3.3.5 Error in Regicnai Reference Databases

^ i The terms "error" and "accuracy" are frequently used in regard to attributes and
j boundaries of polygons obtained from remotely sensed data. Error and accuracy
I estimation requires comparison to reference data of higher accuracy and reliability.
\ Conceptually, "accuracy" can only be determined on the basis of a highly specific set
I of criteria that effectively generalizes for large areas the resolution and accuracy that is^ j attainable in field surveys. As noted previously (Sec. 3.3.1), it is essential that criteria
i are devised to consistently assign each class and the spatial extent of that land coverclass whether the data on which the judgement is based is remotely or locally

o b t a i n e d .

^ The design and accuracy of the regional reference database are of paramount
importance. Land cover classes are abstractions intended to generalize and simplify
complex real world phenomena. The abstract classes are discrete, yet the data
surfaces they represent are continuous. Real world land cover is, in fact, a prime
example of fuzzy set composition. Spatially, natural land cover grades from one type

^ to another through transition zones that clearly are not distinct boundaries.Furthermore, classes and zones change fractally in accordance with the resolution of
observation. Categorically, land cover types are distinguished from one another by
characteristic configurations of water, minerals, and woody and herbaceous biomass
in an infinite variety of proportions and two-dimensional and three-dimensional

^ arrangements. Definitions are frequently attempted, but it is conceptually impossible
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T
•X to define all possible variations. Temporally, land cover at a specific place
f continuously changes from one type to another due to weather, climatic change,

hydrologic alteration, other natural processes, and human activity. Usually, change is
imperceptible over brief periods of observation, but substantial change can be
expected from year to year, and massive changes can be expected over long periods
of time. Observationally, land cover is fuzzy because each observer is forced to
assimilate all of the spatial, categorical, and temporal fuzziness into a discrete
judgement. Thus, the designation of static land cover for any given site, even in the
field, is probabilistic, not deterministic. Thus, for land cover change, the designation
is even more complicated because of the additional need to decide what constitutes a
significant change among the many changes continuously occurring in a real world
landscape while referencing these apparent changes to a static database.

3.4 Selection of Error Evaluation Algorithms

Accuracy assessment is a prime illustration that numerous methods and
techniques, well established for remote sensing of small areas and single time
periods, do not serve for large areas, past time periods, or change databases. Current
guidance (Chrisman, 1991a; Congaiton, 1991; NIST, 1992) does not work well for
change detection because attribute and positional accuracy are measured
independently. Sample points for measuring attribute accuracy typically are taken at
the interiors of class polygons and are separate from the samples used to measure
positional accuracy (Root Mean Square Error-RMSE). Even for the static land cover of
a single time period, the large areal extent of regional databases creates many
problems that have not been resolved in remote sensing literature. It is infeasible, for
example, to conduct field investigations of such a large area with a sampling pattern
as dense as that employed In an area of local extent. Hence, the sample to population
ratio is lower and, in effect, each sample site stands for a much larger portion of the

I total population. The magnitude of the field effort is compounded in a changeI detection database by the large number of classes.
Change databases usually are expressed as a change matrix in which each

axis represents the quantity of area in each land cover class in each time period. The
challenge is to develop statistics that will adequately capture the relationship of such

1 small samples to the larger regional population (area stratified by land cover class),i The problem may be stated: Given a region of size A and a matrix of dimension X,' how large as a the stratified sample is required to adequately represent regional
accuracy? Once this sample size and distribution are determined, the question shifts

: to practical considerations, principally the aggregate time and cost of sampling' ! compared to project resources. Section 6 makes recommendations on the proper
selection and application of statistics for assessing the accuracy of change detection
products .
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4 . 0 E R R O R C H A R A C T E R I Z AT I O N

Broadly speaking, the simple definition of change Is difference - difference inthe landscape between two times. Unfortunately, the definition of error Is quite ciose.
Error can be roughly defined as the difference between the data recorded and a "true"
value that might have been obtained with greater expense, effort, etc. While the
concept of a true value Is a useful construct for statistics. It Is rather difficult In actual
practice. Errors are unexplained variations, whether they are estimated over time or
by other repetitions. One of the most Important Issues In change detection Is ensuring
that the changes reported are not confused with errors. This Is a difficult proposition,
and unlikely to be handled In a totally satisfactory manner.

In the treatment of spatial data. It Is common to consider as errors all the
differences between the Information recorded and the "truth". The concept of truth
here Is decidedly less than absolute. In practice, as compared with a source of higher
accuracy, the one with a RMSE of 1/3 of the RMSE of the source In question, may be
adequate to perform tests with reasonable success. Other measurements can also
give an estimate of the variability of a data source using sampling procedures or
repeated measurement as In surveying. Such an approach would focus on the errors
introduced by each technical process In preparing the Information. It could be termed
an "error budgef approach.

Another attitude towards spatial data considers the variability to be Inherent In
the landscape as well as In our procedures used to measure It. The clean and tidy
models that we apply to land cover are really only approximations for ecological
systems that are characterized by a whole hierarchy of processes. These processes
vary In time from minutes to thousands of years and In space from small local areas to
large regions. Hence, we can speak of a landscape that has no enduring "truth", but
more of a probability density function, a stochastic process.

Whatever our attitude about error, errors can be tracked back to the various
technical steps In Information handling. Errors will have a specific form depending on
the nature of the technical processes Involved. This chapter of the report will proceed
with a review of the error sources that should be expected (section 4.1), and a general
characterization of error types (section 4.2). Section 4.3 will deal with an error budget
approach, although not taken for this study.

4 . 1 E r r o r S o u r c e s

The procedures used in constructing a data product have an influence on error.
Some procedures Increase the error, so that It accumulates, while other procedures
are designed to reduce error. A basic step In accuracy assessment Is to understand
the nature of the specific procedures used In the particular case. Since there are so
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many possible production processes, this section will only consider the generic
circumstances of satellite remote sensing, as an example.

There are many sources of errors that are associated with classifications
derived from remotely sensed data. These sources are well documented In a paper
by Lunetta et al. (1991) and include data acquisition, data processing, data analysis,
and data conversion error. In addition, errors occur as a result of the error assessment
process and the final product presentation. Figure 1 presents a summary of these
error sources. The error for a single datum is represented in a figure from Lunetta et
al. (1991). A second date has been added and the errors due to change have also
been incorporated into the new figure. It should be noted that the errors are likely to
correlate at the two dates. It is hoped that some leaming occurred during the first
classification that would minimize the errors in the second date. However, it is
possible that the two classifications would be performed by separate groups at
different times, and in this case, the errors would be independent.

The major steps that introduce'errors start vyith the basic source material. The
sensor systems have limitations, and are rnfluenced by environmental conditions such
as atmosphere, soil moisture, and plant phenology. The imagery is connected to the
map projection by correlation to ground control, another source of information. This
step contributes to positional error, considered in the next section below. The raw
material is then processed, first through a set of rectifications, then typically through
statistical classification procedures.

As mentioned above, the error assessment process itself can be a source of
error and confusion. Congalton and Green (1993) document many of sources of
confusion between the remotely sensed classification and the reference data used. In
this case, the errors would be independent.

1. Registration differences between the reference data and the remotely
sensed map classification.

2. Delineation error encountered when the sites chosen for accuracy
assessment are digitized.

3. Data entry error when the reference data is entered into the accuracy
a s s e s s m e n t d a t a b a s e .

4. Error in interpretation and delineation of the reference data (e.g. photo
interpretation error or field observation error).

5. Changes in land cover between the date of the remotely sensed data
and the date of the reference data (temporal error). For example,
changes due to fires or urban development or harvesting.
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Variation in classification and delineation of the reference data due to
inconsistencies in human interpretation of heterogeneous vegetation.

Errors in the remotely sensed image classification.

Errors in the remotely sensed image delineation.

4 .2 Er ro r Par t i t i on ing

Whatever the particular sources of error, spatial information has distinct forms of
differences. At the most primitive level, all spatial data involves recording something
conceming time, space and some "attribute". Different forms of collecting information
will lead to different choices about which element is emphasized. Sinton (1978)
described some of the basic choices that lie behind most map sources. In monitoring
certain processes, such as tides and river flow, it is common to record the height of
some body of water at a specific gauge location. These heights can be tracked as a
continuous trace on analog equipment, or discretized to readings at specific times.
For this kind of data, the spatial location is the least flexible. The measurements are
not comparable if the gauge is relocated to another position. The time also serves as
a form of control, and the height attribute is the element actually measured. These
gauges are not the type of data recorded on most maps. If they are used on a map,
the fixed locations must be used to estimate a new distribution that emphasizes the
spatial component. To do this, typically, the time element must be reduced in
prominence. For instance, it is common to show Mean Low or Mean High tides as a
contour, interpolated between the heights estimated at each gauge. Sometimes tide-
coordinated photography can assist in this process by timing the photograph at the
time of estimated tides. In any case, the data are transformed from a form of temporal
control with measurement of height to a measurement in the horizontal plane with time
more fixed and less prominent.

In land cover mapping, the standard approach has fixed the time component by
mapping a "snapshot". Sinton discussed the two distinct approaches to land cover
mapping characterized by one focused on the locations, and the other on the attribute.
In traditional field survey techniques (dating back to the early part of this century), it is
common to go into the field (or into the photo interpretation process) with a specific set
of classes to map. The mapping process involves distinguishing objects on the basis
of this key, and drawing boundaries to divide them. The measurements are actually of
the boundaries. In the other approach, some set of spatial objects is taken as the unit
of analysis - most typically an exhaustive set of pixels. With some basic
measurements for these objects, a transformation is sought that matches the desired
classification as closely as possible. Due to cartographic conventions and
expectations established long ago, the remotely sensed products are often filtered and
smoothed to make them appear to look like results of the former method. These
procedures actually confuse the basis for measurements. In practice, then, most land
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cover mapping is performed under a relatively consistent set of conventions, despite
divergences in the technology.

A land cover map portrays a standardized set of exhaustive categories covering
some region at a fixed time. Although some classifications permit categories of
"mixed" types, the basic convention is that each place on the map belongs to one and
only one category. In such a map, there are three kinds of error, though they will be
inevitably entwined. All error in a map will consist of identifying the wrong category at
a particular point. There are distinct ways in which this may occur, just as there are
distinct forms of change (see above). First, the map can be of the wrong time, or of
variable time across its surface. However, the principal indication that if it is of the
wrong time is through the other two forms of error. Some errors in category are spatial
in character. Since the distinctions form discrete boundaries, these boundaries could
be mislocated through a variety of processes. These errors will be considered as
"positional", even though some of them are clearly relative to such problems as "fuzzy"
boundaries that involve the classification process as well. Finally, other errors occur
basically outside the spatial framework of the data. These involve misclassification of
whole objects. These will be called "attribute" error.

4 . 2 . 1 P o s i t i o n a l E r r o r

The basic model of a land cover map relies upon identifying each place in the
landscape as a corresponding place in the model. This process involves a
simplification or generalization. One aspect of that simplification is that the concept of
"poinf is not really as dimensionless as the mathematical model of a point. If this
spatial transformation is not carried out correctly, then the model will make incorrect
statements about some places. Since the standard is that the categories are different,
not all differences in position will be perceptible. If a land cover map is misregistered
to the north, then the differences will only appear along the north and south sides of
each clump of points (polygon) with the same classification. In a vector
representation, classifications are bounded by boundaries. These boundariesenclose polygons, regions determined to be sufficiently uniform to merit inclusion in
the particular class. This decision involves many components, some of them dealing
with the attribute and classification issues, and some of them positional. A boundary
in some cases may be perfectly sharp, reflecting a clear change in the phenomenon,
as in the transition from a farm field to a woodlot, or from a lake to a sand beach (at a
specific time). Other transitions may be quite imperceptible, as in the gradation from a
dry forest to a forested wetland.

One element of classifying land cover involves "inclusions", small isolated
pockets of another class enclosed in a larger matrix. Many ecological processes
depend on the texture of these relationships. As Goodchild et al. (1992) points out, in
a vector representation, the edges may actually have a higher chance of representing
the correct local conditions. In a raster representation, positional effects are just as
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inescapable. Traditional photointerpretation integrates a spatial component into the
classification step, and produces a vector map. The raster method, by classifying
pixels independent of their neighbors (as usually done), then forces a subsidiary
spatial filtering step to simplify the spatial structure of the results. This step is usually
performed using the final classification, not the original spectral values.

Positional error can be divided into a number of categories. The"observational"
and "inherent" error relate to error associated with the methods or to the landscape.
While this partitioning deals with cause, other divisions deal with what can be done to
model and remove certain errors. An error that can be modeled is systematic. The
most simple systematic positional errors involve misregistration of a map (e.g., offset
or rotated). Systematic errors often can be removed in quality control steps, if tests are
performed and analyzed appropriately. Most statistical models leave the residual
error in the category of "random", or invidual perturbations. In some cases, it is
important to recognize that these errors can come from decidedly distinct populations.
Sorne large errors (as in incorrectly locating a registration tick mark) should be termed
"blunders" and dissociated from, the kinds of erVors more usually considered random.
Positional errors of the random nature can-derive from the sources, listed in section

Positional accuracy is best discussed within the framework of measurement by
thinking of position as a combination of two measurements (x,y), representing the
easting and northing of a pair of UTM coordinates, respectively. Each measurement is
subject to error. For example, if 100 people were asked to measure the coordinates of
a road intersection on a topographic map, the results would show variation in both
coordinates. In practice, it is likely that the variation in both coordinates would follow a
normal distribution or bell curve, with most measurements clustered, and a few
extremes in both positive and negative directions. The amount of variation is likely to

^ be similar in both coordinates, and, moreover, errors are likely to be uncorrelated, in
the sense that the average of all 100 measurements will be very close to the true
location. If these assumptions are true, and there is no obvious reason why they
should not be, the errors in both coordinates can be visualized as a three-dimensional
bell, or circular normal distribution.

Several statistics of the circular normal distribution are in common use to
describe positional accuracy. Perhaps the most commonly used is the Circular Map
Accuracy Standard, or CMAS, defined as the 90th percentile of the circular normal
distribution, or 2.146 times its standard deviation. More conceptually, it forms a circle

^ about the true location of the point, within which the observed location is expected to
lie 90% of the time. Using the example of the topographic map, it might tum out that
90% of the 100 people determined the road intersection's coordinates to within 0.5mm
of their true location at the scale of the map, leaving 10 people with positional errors of
more than 0.5mm. National map accuracy standards require a CMAS of 1/40 inch, or

^ 0.64mm, while a typical CMAS for a map digitizer is 1 mm.
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CMAS is a well-defined statistic, and useful when positional accuracy is
assessed based on a sample of points. For general purposes, however, it is
necessary to use a less rigorous approach. Unless otherwise specified in this section
of the report, the term "positional accuracy" should be interpreted as a linear measure
approximately equal to the CMAS, and based on the same assumptions, but not
implying the same rigor of definition.

CMAS can be used to describe the positional accuracy of a point. The
accuracy with which two points can be positioned relative to each other depends on
the positional accuracy of both. If it is possible to assume that errors in the two points
are independent, then a simple calculation can be used to determine the error in
relative position, by taking the square root of the sum of the squares of the two
positional accuracies. For example, if one point has a positional accuracy of 1mm and
a second point has a positional accuracy of 2mm, a rough estimate of the error in their
relative positions is:

Most of the information in a land cover map does not consist of well-defined
points that can be measured with CMAS or similar approaches. Some positional
errors in the whole database, such as registration, can be estimated from those of a
few well-defined points in the whole database. However, the positional errors in
boundaries of classes are not totally captured by such a measure. The issue of "fuzzy
boundaries" (not to be confused with a more general "fuzzy set" theory for land cover
maps) creates position-like error from what is really a difficulty in carrying out the
classification system for attributes in the environmental conditions of ecotones or
t r a n s i t i o n z o n e s .

4 . 2 . 2 A t t r i b u t e E r r o r

In contrast to positional error, attribute error involves primarily the taxonomy of
the classification, not the spatial expression of the land cover map. Of course, these
two components are intermingled, so It may be hard to distinguish them. Some of the
most devastating attribute errors involve difficulties with time and change. In making a
land cover map, it is common to use multiple sources, such as field samples and
satellite images, photo keys, and aerial photographs. If these derive from different
dates, a true change may be designated as an error.

In most procedures to construct a land cover map, a major source of error is
connecting the source materials to the classification system. When an unsupervised
classifier, the problem arises when regrouping and naming the clusters. When a
supervised classification, the problem arises when selecting and naming the
supervised training samples as representative of the class.
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The most classic attribute error will distinguish a particular spatial object (i.e.,
one spectrally distinct from its neighbors) and then classify it in the wrong category.
These mistakes occur when, for example, plowed fields are classified as developed
because the soil is spectrally confused with concrete.

In other cases, the idea that there is a single classification may be the problem.
Land cover may be mixed, down below the level of resolution in the sensing system or
the mapping filter or mixed above the aerial perception of the field observer. Land
cover maps come with written or unwritten expectations about spatial texture, often
phrased in terms of minimum mapping units. If the actual variability is smaller, then
there are inclusions that are intentionally generalized into their surrounding zones.

Unlike positional error that occurs in the continuous metric of space (where
distance provides a useful measure of error), attribute error is often discrete. Though
there might be applications in which classes are at least partially ordered on some
scale, land cover classes are fundamentally unordered. A misclassificatlon matrix
(see below) must be used to represent the amount of error between each pair of
classes. When there are a large number of classes, the misclassificatlon matrix
(increasing as the square of the number of categories) is very large, and often, as a
result, rather sparse. Due to the size of the matrix, it is unreasonable to attempt to
estimate the quantity in each cell with the same level of confidence. Sampling efforts
would be misapplied in the case of some rare events. A spatial stratification is more
likely to estimate prevalence in a cost-effective manner. It is also true that some
categories are less likely to be involved in errors, either because they are spatially
distinct or because they are distinct taxonomically (i.e., spectrally).

Current procedures used to estimate classification accuracy are directed
towards the centers of homogeneous polygons. By avoiding errors associated with
the positional accuracy of the borders, the result is focused on attributes, but at the
expense of understanding other types of error. A spatial framework for accuracy
estimation should ensure that the various sources of error will be included in the
a s s e s s m e n t .

In other disciplines, there has been substantial development of the statistical
procedures to treat cross-classifications such as these error matrices. Notice that a
change detection analysis produces a similar matrix of cross-classification. However,
there are many difficulties in applying the procedures directly from other disciplines.
Spatial data does not have discrete "events" or cases, because the land cover map is
an exhaustive classification of a whole region. Rather than the traditional sampling
error based on underlying population prevalence, spatial error is much more attuned
to local aberrations and autocorrelations. Without the discrete metric of a "case", the
Poisson sampling model simply may not address the kind of error likely in spatial
classifications. Hence, the fit provided in most estimation procedures does not relate
to the actual error circumstances. Yet, the analytical perspective of these techniques.
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in decomposing the effects, may be useful in change detection studies, if they can be
estimated with confidence.

5.0 ACCURACY IMPLICATIONS OF IMAGE PROCESSING AND
C H A N G E D E T E C T I O N M E T H O D S

Successful remote sensing change detection, especially those changes in
uplands and wetlands in the coastal regions, requires careful attention to sensor
systems, environmental characteristics, and geodetic control. Failure to understandthe impact of the various parameters on the change detection process can lead to
inaccurate results, ideally, the remotely sensed data used to perform C-CAP change
detection are acquired by a remote sensor system which holds the following factors
constant; temporal, spatial (including look angle), spectral, and radiometric. It is
instructive to review each of these parameters and identify how they impact the
accuracy of C-CAP remote sensing change detection projects. The issues involved in
change detection of uplands and wetlands using satellite remote sensor data and
issues in common with aerial photographic change detection are discussed, and
issues specific to aerial photographic interpretation of submerged rooted vascular
plants (SRV) are addressed in section 5.2.

5 . 1 S a t e l l i t e R e m o t e S e n s i n g

5.1.1 System Considerations

There are two important temporal resolutions which should be held constant
when performing coastal change detection using multiple dates of remotely sensed
data. First, the data should be obtained from a sensor system which acquires data at
approximately the same time of day (e.g., Landsat Thematic Mapper data are acquired
before 9:45 am for most of the conterminous United States). This eliminates diumal
sun angle effects which can cause anomalous differences in the reflectance properties
of the remotely sensed data. Second, whenever possible it is desirable to use
remotely sensed data acquired on anniversary dates, e.g., October 1, 1988 and
October 1, 1993. Using anniversary date imagery removes seasonal sun angle
differences which can make change detection difficult and unreliable. Usually precise
anniversary date imagery is not available. The determination of acceptable near-
anniversary dates then depends on local and regional factors such as phenological
cycles and annual climatic regimes.

Accurate spatial registration of at least two images is essential for digital
change detection. Ideally, the remotely sensed data are acquired by a sensor system
which collects data with the same instantaneous-field-of-view (IFOV) on each date.̂
For example, Landsat Thematic Mapper data collected at 30 x 30 m spatial resolution
(Table 1) on two dates are relatively easy to register to one another.
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Table 1 Selected Satellite Remote Sensing System Characteristics

Remote Sensor
System

Spectral Resolution
I n M i c r o m e t e r s

Spatial
R e s o l u t i o n
In Meters

Temporal
R e s o l u t i o n
In Days

R a d i o m e t r i c
R e s o l u t i o n
In Bits

Landsat MSS 1, 2, 3 Band 1 {.50-.60) 8 0 X 8 0 1 8 7

Landsat MSS 1, 2, 3 Band 2 (.60-70) 8 0 X 8 0 1 8 7

Landsat MSS 1, 2, 3 Band 3 (.70-.80 8 0 X 8 0 1 8 7

Landsat MSS 1, 2, 3 Band 4 (.80-1.1) 8 0 X 8 0 1 8 7

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 1 (.45-.52) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c
Mapper 4, 5

Band 2 (.52-.60) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 3 (.63-.69) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 4 (.76-.90) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 5 (1.55-175) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 7 (2.08-2.35) 3 0 X 3 0 1 6 8

L a n d s a t T h e m a t i c

Mapper 4, 5
Band 6 (10.4-12.5) 1 2 0 X 1 2 0 1 6 8

S P O T H R V X S Band 1 (.50-.59) 2 0 X 2 0 polntable a

S P O T H R V X S Band 1 (.61-.68) 2 0 X 2 0 pointable 8

S P O T H R V X S Band 3 (.79-.89) 2 0 X 2 0 polntable 8

S P O T H R V P A N Pan (.51-.73) 1 0 X 1 0 pointable 8
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Geometric rectification algorithms (Jensen, 1986; Novak, 1992) are used to register
the Images to a standard map projection (Universal Transverse Mercator - UTM, for
most U.S. projects). Rectification should result in the two images having a root mean
square error (RMSE) of < ±0.5 pixel. RMSE > ±0.5 pixel may result in the
identification of spurious areas of change between the two data sets.

it is possible to perform change detection using data collected by two different
sensor systems with different IFOVs, e.g. Landsat TM data (30 x 30 m) for date 1 and
SPOT HRV data (20 x 20 m) for date 2. In such cases, it is necessary to decide upon a
representative minimum mapping unit (e.g. 20 x 20 m) and then resample both data
sets to this uniform pixel size. This does not present a significant problem as long as
one remembers that the information content of the resampled data can never be
greater than the IFOV of the original sensor system (I.e. even if the Landsat TM data
are resampled to 20 x 20 m pixels, the information was still acquired at a 30 x 30m
nominal resolution and one should not expect it to be able to extract additional spatial
detail in the dataset).

Some remote sensing systems like SPOT collect data at off-nadir look angles
as much as ± 20° (Table 1), i.e. the sensors obtain data of an area on the ground from
an 'oblique' vantage point. Two images with significantly different look angles can
cause problems when used for change detection purposes due to bidirectional
reflectance factor (BRDF) difference. For example, consider a maple forest consisting
of very large, randomly spaced trees. A SPOT Image acquired at 0° off-nadir will look
directly down upon the 'top' of the canopy. Conversely, a SPOT image acquired at
20° off-nadir will record reflectance information from the 'side' (near the top) of the
canopy. Differences in BRDF from the two datasets can cause spurious change
detection results. Therefore, the data used in a remote sensing digital change
detection should be acquired with approximately the same look angle whenever
possible.

A fundamental assumption of digital change detection is that there should exist
a difference in the spectral response of a pixel on two dates if the biophysical
materials within the IFOV have changed between dates. Ideally, the spectral
resolution of the remote sensor system is sufficient to record reflected radiant flux in
spectral regions that best capture the most descriptive spectral attributes of the object.
Unfortunately, different sensor systems do not record energy in exactly the same
portions of the electromagnetic spectrum, i.e. bandwidths (Table 1). For example, the
Landsat multispectral scanner system (MSS) records energy in four relatively broad
bands, SPOT HRV sensors record in three relatively coarse multispectral bands and
one panchromatic band, and the Thematic Mapper in six relatively narrow optical
bands and one broad thermal band (Table 1), Ideally, the same sensor system is
used to acquire imagery on multiple dates. When this is not possible, the analyst
should select bands which approximate one another. For example, SPOT bands 1
(green), 2 (red), and 3 (near-infrared) can be considered with Landsat TM bands 2
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(green), 3 (red), and 4 (near-infrared) or Landsat MSS bands 1 (green), 2 (red), and 4
(near-infrared). Many of the change detection algorithms to be discussed do not
function well when bands from one sensor system do not match those of another
sensor system, e.g. utilizing the Landsat TM band 1 (blue) with either SPOT or
L a n d s a t M S S d a t a i s n o t w i s e .

An analog to digital conversion of the satellite remote sensor data usually
results in 8-bit brightness values with values ranging from 0 through 255 (Table 1).
Ideally, the sensor systems collect the data at the same radiometric precision on both
dates. When the radiometric resolution of data acquired by one system (e.g., Landsat
MSS 1 with 7-bit data) are compared with data acquired by a higher radiometric
resolution instrument (e.g., Landsat TM with 8-bit data) then the lower resolution data
(e.g., 7-bit) should be 'decompressed' to 8-bits for change detection purposes.
However, the precision of decompressed brightness values can never be better than
the original, uncompressed data.

5.1 .2 The Prefer red C-CAP Sate l l i te Sensor System

The Landsat Thematic Mapper (TM) is currently the primary sensor
recommended for C-CAP image acquisition and change analysis for all land cover
except submerged aquatic vegetation. A Landsat TM image, although its spatial
resolution is not as high as that of a SPOT satellite or aircraft MSS image, is generally
better suited to the C-CAP mission and less expensive to acquire and process for
large-area coverage. Compared to SPOT imagery, TM has better spectral resolution
and specific spectral bands that are more applicable to wetlands delineation (bands 5
and 7). In addition, TM is preferred over SPOT because TM has collected data for a
longer time (since 1982 as opposed to SPOT since 1986) and because many TM
scenes of the United States coastal regions were systematically collected on a routine
b a s i s .

There are advantages and disadvantages to using other sensors. Aircraft
multispectral scanners are more expensive and complex to utilize over large regions
(Jensen et al., 1987). However, good algorithms are now available for
georeferencing, and in certain cases (e.g., when higher spectral or spatial resolution is
needed and when unfavorable climactic conditions for satellite sensors exist) aircraft
sensors may be optimum. The SPOT sensor has a greater temporal coverage
because the satellite can collect data off-nadir. However, if off-nadir SPOT imagery is
used for C-CAP change analyses, the data must be normalized to compensate for
different look angles that may preclude pixel-to-pixel spectral-change analysis.
Nevertheless, SPOT imagery may be a reasonable altemative in certain areas due to
cloud cover or other impediments to TM data availability. C-CAP should remain
flexible in order to take advantage of new sensors and other technologies that become
operational during the lifetime of the program.
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,5.1.3 Environmental Considerations

Failure to understand the impact of various environmental characteristics on the
remote sensing change detection process can also lead to inaccurate C-CAP results.
When performing change detection it is desirable to hold environmental variables as
nearly constant as possible. Specific environmental variables and their potential
impacts are described below.

Ideally, there should be no clouds, haze, or extreme humidity on the days
remote sensing data are collected. Even a thin layer of haze can alter spectral
signatures in satellite Images enough to create the false impression of spectral
change between two dates Obviously, 0% cloud cover is preferred for satellite
Imagery and aerial photography. At the upper limit, cloud cover > 20% is usually
unacceptable. It should also be remembered that clouds not only obscure terrain but
the cloud shadow also causes major image classification problems. Any area
obscured by clouds or affected by cloud shadow may impact the entire change
detection process, severely limiting the utility of the final change detection product.
Therefore, regional analysts must use good professional judgement in evaluating
such factors as the criticality of the specific locations affected by cloud cover and
shadow, and the availability of timely surrogate data for those areas obscured (e.g.
perhaps substituting aerial photography interpretation for a critical area). Even when
the stated cloud cover is 0%, it is advisable to 'browse' the proposed Image on
microfiche at the National Cartographic Information Center in each region to confirm
that the cloud cover estimate is correct. Cooperators are also referred to the Aerial
Photographers Clear Day Map, U.S. Department of Commerce, Environmental Data
Service for monthly probabilities of clear air.

Assuming no cloud cover, the use of anniversary dates helps to ensure general,
seasonal agreement between the atmospheric conditions on the two dates. However,
if dramatic differences exist in the atmospheric conditions present on the "n" dates of
imagery to be used in the change detection process, it may be necessary to remove
the atmospheric attenuation in the imagery. Two alternatives are available. First,
sophisticated atmospheric transmission models can be used to correct the remote
sensor data if substantial in situ data are available on the day of the overflights.
Second, an alternative empirical method may be used to remove atmospheric effects.
A detailed description of one empirical method of image to image normalization is
found in "Guidance for Regional Implementation," (Dobson et al., 1993).

Ideally, the soil moisture conditions should be identical for the n dates of
imagery used in a change detection project. Extremely wet or dry conditions on one of
the dates can cause serious change detection problems. Therefore, when selecting
the remotely sensed data to be used for change detection it is very important not only
to look for anniversary dates, but also to review precipitation records to determine how
much rain or snow fell in the days and weeks prior to remote sensing data collection.
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When soil moisture differences between dates are significant for only certain parts of
the study area (perhaps due to a local thunderstorm), It may be necessary to stratify
(mask out) those affected areas and perform a separate analysis which can be added
back in the final stages of the project.

Vegetation grows according to seasonal and annual phenological cycles.
Obtaining near-anniversary images greatly minimizes the effects of wetland seasonal
phenological differences which may cause spurious change to be detected in the
imagery. One must also be careful about two other factors when dealing with man-
made upland seasonal agricultural crops. First, many monoculture crops (e.g. corn)
normally are planted at approximately the same time of year. A month lag in planting
date between fields having the same crop can cause serious change detection error.
Second, many monoculture crops are comprised of different species (or strains) of the
same crop which can cause the crop to reflect energy differently on multiple dates of
anniversary imagery. These observations suggest that the analyst must know the
biophysical characteristics of the vegetation as well as the cultural land-tenure
practices in the study area so that imagery which meets most of these characteristics
can be selected for change detection. Many other factors also come into play such as
hydrological and climatological factors (i.e., a wet versus dry year), which are
recommended to be taken into account to the extent possible.

The choice of image date is best determined by mutual agreement among
remote sensing specialists, biologists, ecologists, and local experts. The selection of
the acceptable window of acquisition will be made independently by participants in
each region. No single season will serve for all areas because of substantial
latitudinal variation extending from temperate to tropical regions. For example, coastal
marshes in the Mid Atlantic Region are best inventoried from June through October
while submerged habitats in southern Florida may be inventoried best in November.
Even within regions, some cover types will be more easily distinguished in different
seasons. For example, in the Caribbean, estuarine seagrasses can be detected best
in early January, yet marine seagrasses can be detected best in May or June. The
best time of the year to acquire photography is during the season of maximum
biomass or flowering of dominant species, considering the phenologic overlap for the
entire community. This is June for submerged vegetation of the Pacific northwest and
Atlantic northeast, April and May in North Carolina, and September for most of the
other species in the eastem U.S. Technically, these vegetation patterns could be
monitored throughout the year, but cost limitations usually limit the analyst to a single
d a t e .

Tidal stage is a crucial factor in satellite image scene selection and the timing of
aerial surveys. Ideally, tides should be constant between time periods, but this would
rule out synoptic satellite sensors since tide stages are not synchronized within a
region or even with a single ifnage. Altematively, analysts should avoid selecting the
highest tides and should take into account the tide stages occurring throughout each
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scene. Tidal effect varies greatly among regions. In the Northwest, for example, when
all of the temporal, atmospheric, and tidal criteria are taken into account the number of
acceptable scenes may be quite small. In some regions it may be necessary to seek
alternative data such as SPOT satellite data, aerial photographs, or other land cover
databases. For most regions, mean low tide (MLT) or lower will be preferred, one or
two feet above MLT will be acceptable, and three feet or more will be unacceptable.
Ideally, tides for aerial surveys should approach low tide as predicted in NCAA,
National Ocean Survey (NOS) tide tables, but optimal visualization of the subtidal
bottom depends on water clarity as well as depth. In addition, some estuaries
experience significant tidal lag which must be considered even within a single
s a t e l l i t e s c e n e .

5.1.4 Image Processing

With the classification scheme developed and the appropriate remote sensor
data selected, it is possible to process the data to extract upland and wetland change
information. This involves geometric and radiometric correction, classification (if
necessary) selection of an appropriate change detection algorithm, creation of change
detection products, and error evaluation.

5 . 1 . 4 . 1 R e c t i fi c a t i o n

Georeferencing (spatial registration of a remotely sensed image to a standard
map projection) is a necessary step in digital change detection and cartographic
i-epresentation. The following C-CAP recommendations should be followed when
rectifying the base image to a standard basemap:

• Geocoded base TM images can be purchased if preferred by regional
analysts. However, participants should be aware that some analysts have
reported undocumented variations in commercial products that can lead to poor
registration in certain regions, especially where local relief requires substantial
terrain correction. Additional registration may be necessary to achieve the C-
CAP standard precision of RMSE<i0.5 pixel. Therefore, it is recommended that
each regional project perform Its own base image to map rectification using the
radiometrically corrected but not geocoded data.
• Ground control points (GCPs) used to compute rectification transformation
coefficients should be relatively static features in the landscape (e.g. road
intersections) and, whenever possible, based on new Global Positioning
System (GPS) measurements taken in the field. When GCPs are digitized from
USGS 7.5' (1:24,000) maps, analysts should use the marginal information and
updates available to improve location of the control points. GCPs should beextracted from mylar copies of the USGS maps whenever possible to minimize
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system produced digitizing error. Traditional paper maps expand and contract
with changes in relative humidity and should not be used for digitizing GCPs.

• C-CAP recommends the use of the current NAD '83 North American Datum.

Unfortunately, most existing map series are based on the NAD '27 datum. NAD
'27 will be acceptable on a region by region basis until published maps based
on NAD '83 are universally available.

• In all but the flattest coastal regions, terrain correction of imagery may be
necessary to reduce image distortion caused by local relief.

• The required coordinate system is Universal Transverse Mercator (UTM). If
another coordinate system is used (e.g. State Plane), it is the responsibility of
the regional analyst to provide complete documentation and conversion
equations.

• It is the responsibility of the regional analyst to understand (or seek advice
concerning) the variety of rectification resampling algorithms (e.g., bilinear
interpolation, nearest neighbor, cubic convolution) and their impact on the data.
Nearest neighbor resampling is recommended.

Rectification of an earlier date (Tb-i) or later date (Tb+i) to the base image (Tb)
can be accomplished in several ways. The primary concern is to accomplish the most
exact co-registration of pixels from each time period and thus reduce a potentially
minimum recommendations and requirements:

• Geocoded and terrain-corrected TM data can be ordered from commercial
vendors. Two separate images can be overlaid according to like coordinates,
but this technique may introduce error if prior geocoding was not precisely the
same in both images. The regional analyst has no control in this process, but if
high precision is accomplished by the vendor, the analyst can significantly
reduce image processing effort at the regional facility.

• The regional analyst can geocode the image to geographic coordinates as
was done with the base image. If this technique is adopted, it is important to
use the identical GCPs and resampling algorithm used to rectify the base
image.

• For multiple images, the preferred technique is to rectify non-geocoded
images directly to the geocoded base image. This technique may have the
advantage of reducing or better controlling co-registration error among images.
Selection and consistency of control points and rectification algorithms are
important to the success of this technique. Cubic convolution algorithms
normally yield the most precise spatial fit, but cubic convolution and bilinear
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interpolation algorithms suffer from the disadvantage of averaging pixel
brightness values. Nearest neighbor algorithms are spatially less precise, but
they offer the advantage of retaining pixel brightness values through the
processes of rectification and registration.

5.1.4.2 Radiometric Normalization of Multi-Date Images

The use of remotely sensed data to classify coastal and upland land cover on
individual dates is contingent upon there being a robust relationship between
remotely sensed brightness values (BVs) and actual surface conditions. However,
factors such as sun angle, Earth/sun distance, detector calibration differences
between the various sensor systems, atmospheric condition, and sun/target/sensor
geometry (phase angle) will also affect pixel brightness value. Differences in direct
beam solar radiation due to variation in sun angle and Earth/sun distance can be
calculated accurately, as can variatio.n-in pixel BVs due to detector calibration
differences between sensor systems. Removal of atmospheric and phase angle effects
requires information about the gaseous and aerosol composition of the atmosphere
and the bi-directional reflectance characteristics of elements within the scene.
However, atmospheric and bi-directional reflectance information are rarely available
for historical remotely sensed data. Also, some analysts may not have the necessary
expertise to perform a theoretically based atmospheric path radiance correction on
remotely sensed data. Hence, it is suggested that a relatively straightfon/vard
'empirical scene normalization' be employed to match the detector calibration,
astronomic, atmospheric, and phase angle conditions present in a reference scene.

Image normalization reduces pixel BV variation caused by non-surface factors
so variations in pixel BVs between dates can be related to actual changes in surface
conditions. Normalization enables the use of image analysis logic developed for a
base year scene to be applied to the other scenes. This can be accomplished using
techniques pioneered by personnel of the U.S. Bureau of Land Management
(Eckhardt et al., 1990). Image normalization is achieved by developing simple
regression equations between the brightness values of 'normalization targets' present
in the base scene (Date Tb) and the scene to be normalized (Date Tb±i).
Normalization targets are assumed to be constant reflectors, therefore any changes in
their brightness values are attributed to detector calibration, astronomic, atmospheric,
and phase angle differences. Once these variations are removed, changes in BV may
be related to changes in surface conditions.

Acceptance criteria for potential 'normalization targets' are (Eckhardt et al.,
1990):

• The targets must be at approximately the same elevation as the land cover of
primary interest within the scene. Most aerosols in the atmosphere occur <
1000 m above ground level (AGL). Selecting a mountain top normalization
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target, thus, would be of little use In estimating atmospheric conditions near sea
level. Although C-CAP projects are on the coast, many regions include areas of
subs tan t ia l l oca l re l i e f .

• The targets should contain only minimal amounts of vegetation. Vegetation
spectral reflectance can change over time due to environmental stresses and
plant phenology. Good targets include bare soil fields and deep, non-turbid
w a t e r b o d i e s .

• The targets must be on relatively flat terrain so that incremental changes in
sun angle between dates will have the same proportional increase or decrease
in direct beam sunlight for all normalization targets.

• The normalization targets should have approximately the same texture over
time. Changing textural patterns indicate variability within the target which could
mean that the reflectance of the target as a whole may not be constant over
time. For example, a mottled pattern on what had previously been a uniformly
gray dry lake bed indicates changing surface moisture conditions, which would
eliminate the dry lake bed from consideration as a normalization target.

Besides selecting targets that meet the four conditions listed above, efforts are
often made to select a set of wet and dry normalization targets exhibiting a range of
pixel brightness values. The greater the time period between the base image (e.g.
1980) and an earlier year image (e.g. 1972), the more difficult it is to locate
unvegetated, dry normalization targets. For this reason, analysts sometimes use man-
made, 'pseudo-invariant' normalization targets such as concrete, asphalt, rooftops,
parking lots, and roads when normalizing historical remotely sensed data (Schott et
al., 1988; Caselles and Garcia, 1989). Hall et.al, (1991) also suggest that the
members of the radiometric control sets do not have to be the same pixels from image
to image in contrast to geometric control points for spatial image rectification, which
are composed of identical elements in each scene. Furthermore, they suggest that
'using fixed elements inevitably requires manual selection of sufficient numbers of
image-to-image pairs of suitable pixels,, which can be prohibitively labor intensive,
particularly when several images from a number of years are being considered.'

The mean brightness values of the base image targets are regressed against
the mean brightness values of the Date Tb+i targets for the n bands used in the
classification of the remote sensor data (e.g. TM bands 2, 3, and 4). The slope and y-
intercept of the n equations are then used to normalize the Tb±i Landsat TM data to the
Tb Landsat TM data. Each regression model contains an additive component (y-
intercept) that corrects for the difference in atmospheric path radiance between dates,
and a multiplicative term (slope) that corrects for the difference in detector calibration.
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sun angle, Earth/sun distance, atmospheric attenuation, and phase angle between
d a t e s .

It is customary to first normalize the remote sensor data and then perform image
rectification (using nearest-neighbor resampling if image classification is to take
place). These data are then ready for individual date classification or the application
of various multi-image change detection algorithms. Most studies that attempt to
monitor biophysical properties such as vegetation biomass, chlorophyll absorption,
health, and other biophysical properties require atmospheric correction.

5.1.5 Change Detection Algorithms

7*he selection of an appropriate change detection algorithm is very important.
First, it will have a direct impact on the type of image classification to be performed (if
any). Second, it will dictate whether important "from-to" information can be extracted
from the imagery. C-GAP requires that the "from-to" information be readily available in
digital form suitable for geographic analysis and for producing maps and tabular
summaries. At least seven change detection algorithms are commonly used by the
remote sensing community, including:

1. Change Detection Using Write Function Memory Insertion

2. Multi-date Composite Image Change Detection

3. Image Algebra Change Detection (Band Differencing or Band Ratioing)

4. Post-classification Comparison Change Detection

5. Multi-date Change Detection Using A Binary Mask Applied to Date 2

6. Multi-date Change Detection Using Ancillary Data Source as Date 1

7. Manual, On-screen Digitization of Change

8. Other methods (e.g., regression-based)

The C-CAP protocol (Dobson et al., 1993) recommends the use of
methods 4 primarily for submerged land and 5 primarily for uplands and wetlands.
Accuracy assessment implications of these two methods are discussed in the
following sections.
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5.1.5.1 Post-Classification Comparison Change Detection

This Is the most commonly used quantitative method of change detection and
may be used in regional C-CAP projects under certain conditions. It requires
rectification and classification of each of the remotely sensed images. These two maps
are then compared on a pixel by pixel basis using a 'change detection matrix' to be
discussed. Unfortunately, every error in each individual date classification map will
also be present in the final change detection map (Rutchey and Velcheck, in press).
Therefore, it is imperative that the individual classification maps used in the post-
classification change detection method be as accurate as possible (Augenstein et ai.,
1991; Price et al., 1992).

Post classification change detection is the method of choice with aerial
photographic data. The C-CAP objective of site specific change detection places
greater emphasis on accuracy and precision of spatial data than required in one-time
inventories or regional summaries of change. Unless historical photography meets C-
CAP requirements and is supported by surface level data, historical presence or
absence of SRV at a given location may remain an open question. Methodology for
monitoring site specific change on a statewide or regional scale is a recent
development (Ferguson et al., 1993).

A change detection matrix, constructed similarly as an error matrix, can be
developed with Tb at the top (instead of reference data in the error matrix) and Tb±i on
the side (instead of classified image data in the error matrix). This change detection
matrix can then be used to summarize specific "from-to" classes for display in a
change detection map. In this way, (n2-n) off-diagonal possible erroneous change
classes can be generated for display on the change detection map.

Post-classification comparison change detection is widely used and easy to
understand. When conducted by skilled image analysts it represents a viable
technique for the creation of C-CAP change detection products. Advantages include
the detailed "from-to" information and the classification map for each year.
Unfortunately, the accuracy of the change detection is heavily dependent on the
accuracy of the two separate classifications. The post-classification comparison is
recommended for C-CAP regional projects when different sensors are involved, when
two separate organizations are classifying the same region at different times, and
when change detection is based on aerial photographic interpretation.

5.1.5.2. Multi-Date Change Detection Using A Binary Change Mask
Appl ied to Date 2

This method of change detection is highly recommended for C-CAP regional
projects. First, the analyst selects the base image (Date Tb). Date Tb±i may be an
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earlier image (Tb-i) or a later image (Tb+i). A traditional classification of Date Tb is
performed using rectified remote sensor data. Next, one of the bands from both dates
of imagery is placed in a new dataset. The two band dataset is then analyzed using
various image algebra functions (e.g. band ratio, image differencing, even principal
components) which produces a new image file. The analyst usually selects a
"threshold" value to identify areas of change and no-change in the new image. The
change image is then receded into a binary mask file, consisting of areas which have
changed between the two dates. Great care must be exercised when creating the
"change/no-change" binary mask (Dobson and Bright, forthcoming). The change
mask is then overlaid onto Date Tb±i of the analysis and only those pixels which were
detected as having changed are classified in the Date Tb+i imagery.

This method may reduce change detection errors (omission and commission)
and provide detailed "from-to" change class information. The technique reduces effort
by allowing analysts to focus on the small amount of area that has changed. In most
regional projects, the amount of actual change over a five-year period will probablybe no greater than 10% of the total surface areia.- The method is complex, requiring a
number of steps, and the final outcome is dependent on the quality of the "change/no-
change" binary mask used in the analysis and the reclassification of the masked area
forTbxi. Nevertheless, this is a highly recommended C-CAP change detection
algorithm.

5 . 1 . 6 C l a s s i fi c a t i o n A l g o r i t h m s

The previous section indicated that two of the eight most commonly used
change detection algorithms are acceptable for C-CAP regional projects:

• Post-Classification Comparison
• Change Detection Using A Binary Change Mask Applied to Date Tb±i

Each of these requires a complete pixel by pixel classification of one date of imagery
and, at least, a partial classification of an additional date. Regardless which approach
is used, the end result is a complete classification for each time period and a matrix of
changes by class ("from" and "to"). Hence, it is instructive to review the C-CAP
approved image classification logic which may be used in the regional projects.

5.1.6.1 Supervised and Unsupervised Image Classification Logic

The primary reason for employing digital image classification algorithms is to
reduce human labor and improve consistency. It is expected that regional analysts
will have sufficient expertise to assess the advantages of alternative classification
algorithms and to recognize when human pattern recognition and other types of
intervention are necessary. In practice, it may be necessary to employ a suite of



algorithms including both supervised and unsupervised statistical pattern recognition
approaches. Currently maximum-likelihood classifiers often serve as a good first step,
but new statistical approaches are being developed and implemented on a routine
basis (Jensen et al.. 1987; Hodgson and Plews, 1989; Foody, 1992). It is important for
analysts to remain flexible with regard to procedures and algorithms.

In an unsupervised classification, the computer is allowed to query the
multispectral properties of the scene based on user specified criteria and to identify x
mutually exclusive clusters in n-dimensional feature space (Chuvieco and Congaiton,
1988). The analyst must then convert (label) the x spectral clusters into iriformation
classes such as those found in the G-CAP Coastal Land Cover Classification System.

in a supervised classification, the analyst 'trains' the classifier by extracting
mean and co-variance statistics for known phenomena in a single date of remotely
sensed data (Gong and Howarth, 1990). These statistical patterns are then passed to
either a minimum-distance-to-means algorithm where unknown pixels are assigned to
the class nearest in n~ dimensional feature space, or to a maximum-likelihood
classification algorithm which assigns an unknown pixel to the class in which it has the
highest probability of being a member. Great care must be exercised when selecting
training samples (Mausel et al., 1990).

%

The most common operational technique for multispectral image digital
interpretation is to perform an unsupervised signature extraction, augmented by
supervised training, followed by a maximum likelihood classification of up to 5 bands.
The resulting spectral radiance map is labelled by interpreters using field observation,
aerial photography, and ancillary data. The resulting reclassified data are usually
smoothed using a local operator (perhaps iterative) and a majority neighborhood rule.
The results are very sensitive to operator selections In the clustering and merging
phases of signature extraction and to the optimization strategies used in the software
for the maximum likelihood classifier (maximum liklihood routines in different
commercial packages are not always the same). EPA has developed a version of the
maximum likelihood classifier that is roughly an order of magnitude faster than other
methods, with no significant change in results.from a full calculation (Weerackoon and
Mace, 1990). C-CAP might consider its adoption. In addition to the care that should
be taken during the labelling process (where most of the errors will occur), C-CAP
should avoid multiple algorithms on different dates for the same area, as method
produced changes will occur.

Q-CAP should also consider segmenting the images into broad landscape
categories prior to running the automated signature extraction and classification
routines. Elevation, land use, and spatial frequency of land cover are all useful
stratification and regionalization tools. In any case, the technique followed should be
uniformly applied across all dates for a region.
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Only training sites which were actually visited on the ground by experienced
professionals or very clearly identified on large scale photographs by experts should
be selected for extracting the multispectral statistical 'signature' of a specific class
when performing a supervised classification or identifying clusters in an unsupervised
classification. It is suggested that a minimum of five training sites per land cover class
be collected. This creates a representative training set when performing supervised
classification and makes labeling clusters much easier in an unsupervised̂
classification. In addition to the image analysts, the field team should contain
specialists in ecology, biology, forestry, geography, statistics, and other pertinent fieldssuch as agronomy. Field samples should be stratified by land cover type and by
various physical factors such as slope, elevation, vegetation density, species mix,
season, and latitude. The polygonal boundary of all field sites should be measured
using global positioning systems whenever possible, and the locational, temporal, and
categorical information should be archived.

The collection of field training sites often requires multiple visits to the field.
Some of the field sites may be used to train a classifier or label a cluster while a
certain proportion of the field sample sites should be held back to be used for
classification error assessment to be discussed.

The following materials are indispensable to a successful field exercise:
• Imagery geocorrected to a standard map projection
• Topographic Maps at 1:24,000 or largest available scale
• Global Positioning System (GPS)
• Aerial photographs

It is advisable to perform, at least, a cursory classification before initiating
fieldwork. In this case, both raw and classified data should be taken to the field. The
primary function of the cursory classification is to guide field workers in targeting thecovers and signatures that are most difficult and confusing. Keep in mind that the vast
majority of all cover will be easy to identify on the ground and on the imagery. Efficient
use of field time as documented, on field survey sheets provides for quick verification of
easy cover types and maximum attention to difficult, unusual, and ecologically critical
cover types.

5.1.6.2 Collateral Data for Training and Accuracy Assessment

There are many potential sources of collateral data including soil maps, NOAA
coastlines (T-sheets), timber surveys, USGS digital line graphs, and digital elevation
models (for elevation, slope, and aspect). These can be incorporated by masking,
filtering, probability weighing, or inclusion in the signature file (Ryerson, 1989; Baker
et al., 1991). Depending on the importance of each category, analysts may use
certain categories to overrule others.
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The National Wetlands Inventory (NWI) is a collateral database that may be of
value when classifying wetlands. Regional analysts should Incorporate NWI data to
the maximum extent possible. NWI data are recognized as the most authoritative and
complete source of wetlands land cover data (Wilen, 1990). However, NWI maps are
not temporally synchronized in each region and are not In a digital format for many
regions. An approach based on complementary use of NWI and imagery will be an
asset to both C-CAP and NWI. At a minimum, NWI maps and/or digital data should be
used to make defined training samples, to check intermediate results, and to aid in the
final verification of the wetlands portion of the C-CAP maps.

Both primary data (field observations, imagery, monitoring network
measurements) and interpreted data (maps, statistical summaries, reports) are useful.
There are many catalogs for primary and interpreted data (i.e. the National Technical
Information Service, the USGS Global Land Information System, the NASA/Global
Change Master Directory, etc.). There are hundreds of federal, state (I.e. State
Cartographers Office), and local (i.e. cadastral and regional planning systems)
directories where detailed and summary information can be found. Sorting through
this plethora of data sets is a laborious task,, and mining the results can be
disappointing. Imagery searches should start with the National Aerial Photography
Program (NAPP) and Agricultural Stabilization and Conservation Service (ASCS) for
aerial photography, including the National Archives for older imagery. Beyond that,
universities, states, and private aerial survey firms all maintain high resolution
photography. The list is only bounded by the searcher's energy and resources.

In addition to the obvious uses of USGS Land Use/Land Cover Data and
USFWS NWI, a few programs within the federal government are worthy of special
attention, but some have data confidentiality issues associated with their use. The
National Agricultural Statistical Service (NASS) has data on agricultural land cover
and use that would be potentially useful to C-CAP. However, the detailed field data
sheets are protected, and serious data confidentiality issues need to be resolved
before NOAA could profitably make use of these data sets. Also, within the
Department of Agriculture, the U.S. Forest Service has detailed forest plot data on
thousands of sites throughout the U.S. as part of the Forest Inventory and Assessment
Program. These data are held as confidential, but they are not protected by special
legislation, and arrangements may be made for their use. Additionally, the Soil
Conservation Service maintains aerial photography (usually oblique, 35mm slides) at
the DOA county offices as part of its responsibilities under the "swampbuster" and
"sodbuster" legislation. These are very useful in documenting conversion of wetlands
to agriculture. These slides are publicly available.

EPA also is conducting environmental monitoring surveys of ecosystems as
part of the Environmental Monitoring and Assessment Program (EMAP). This is
primarily a field survey program in which assessment of ecological condition is made
from sampling indicators using a systematic sample with nodes spaced at
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approximately 27 km intervals. Local intensification of the grid may occur at selected
regions, and contiguous coverage of land cover will be made through the Landscape
Characterization and Landscape Ecology subgroups. Additionally, the Forest,
Agriculture, Wetland, Great Lakes, and Nearcoastal Ecosystem subgroups rnay have
important field observations for use by C-CAP. Access to the EMAP data will be on
line through the EMAP Information System, although it is possible to develop special
data sharing arrangements.

^ EPA, NASA, and USGS are participating in the Global Change Research
f Program's (GCRP) North American Landscape Characterization Pathfinder Project

(NALC), The NALC is producing Landsat MSS time series triplets (70's, 80's, and
90's) of all of North America and the Caribbean for remote sensing of change at an
Anderson Level 1 (approximation).

Another data set is alsp.being developed using Landsat TM (by EMAP, GAP,
and others) in an automated, wall-to-wall classification of the U.S. Partners are
welcomed, and the results will be available through the Earth Observing System Data
and Information System (EOSDIS). Although this effort is at a much coarser resolution
(categorically and cartographically), than C-CAP's, a substantial amount of ancillary
data will be developed during the interpretation process, and some of the change
conditions may also be relevant to C-CAP.

The intelligence community can make some of its data available for
environmental purposes, under special circumstances. A task force of scientists,
called the Environmental Task Force, has made some recommendations on the
potential use of intelligence assets for environmental issues. Currently, some
(obviously restricted) uses are permitted. The USGS/Reston, Virginia, can assist
properly cleared personnel in obtaining access to these data. C-CAP should contact
them for further discussions on applicability and access.

Finally, the whole issue of data access in the federal government is being
addressed through a number of mechanisms. One of the most comprehensive is the
Global Change Data and Information System (GCDIS). GCDIS will start with eiements
such as the NASA Master Directory and GLIS (which exist now) and add EODIS from
NASA and implementations from each participating agency. NCAA is participating in
this process through the Interagency Working Group on Data Management for Global
Change and the GCRP Working Group, Data and Information. Through this effort,
online search, browse, and ordering of imagery, model results, publications, and field
data will be possible by the end of this decade, and in prototype by 1996. Many
search tools, such as WAIS, the CIESIN Greenpages, WWW, and Gopher, are
available now. It is recommended that C-CAP track this development and plan to use
it in the future as part of their long range program.
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5.2 Accuracy Assessment Issues Specific to Change Detection of Water
and Submerged Land Based on Aerial Photography

The C-CAP Coastal Land Cover Classification Identifies Marine/Estuarine
Aquatic Beds, specifically, submerged Rooted Vascular Plants (SRV) of primary
importance to be inventoried and placed in the C-CAP database (Klemas et al., 1993).
Many of the steps discussed in Section 4 to monitor Uplands and Wetlands are
pertinent to monitor SRV. However, there are significant differences which cannot be
ignored, including:

• mapping SRV is primarily a photogrammetric task rather than a satellite task
requiring an entirely different sensor system (aircraft, camera filter and
film):• aerial photography is not normally radiometrically (except for color balance
between photographs) or geometrically corrected;

• time of day, sensor altitude, and flightline placement are very flexible, unlike
fixed orbit satellite sensor systems;

• numerous environmental conditions can be considered (sea state, water
clarity, water depth, low altitude atmospheric conditions), to optimize
photography, and• aerial photographs are in analog format.

These differences are so significant that it is instructive to focus on aerial
photography of SRV. Some successes have been reported with satellite imagery and
a number of other technologies. At the present time, these technoiogies may
supplement and eventually they may replace aerial photography for change detection
i n S RV.

5.2.1 Metric Photography and Photographic Scale

The recommended film is Aerocolor 2445 color negative film. Second choices
are Aerochrome 2448 color reversal film and Aerographic 2405 black and white
negative film. We do not recommend infrared film for delineating SRV habitat except
when SRV are intertidal. In our experience in North Carolina with tandem cameras,
Aerochrome 2443 false color infrared film, was much less effective than color film at
recording benthic features in shallow, moderately turbid water. Metric quality aerial
photographs (< 3 degrees of tilt off-nadir) are essential and should be acquired with a
protocol similar to that employed by NOAA's Photogrammetry Branch (1980) to
produce the highest quality data possible. Photography should be obtained at a scale
appropriate to the areal extent of habitat, local water conditions, type of habitat being
studied and resolution requirements for the resultant data. Photographic scale should
normally range from 1:12,000 to 1:24,000. For chronically turbid estuarine or brackish
water areas, 1:12,000 or larger scale photographs taken at times of minimal turbidity,
may be required for acceptable visualization of submerged features.
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Flightlines are planned with reference to aeronautical and nautical charts to
include ail areas known to have or which could have SRV. Ideally, each photograph
in a flightline records land features sufficient to accurately locate images relative to the
base map, about 1/3 of the exposure. This permits correction of photographic scale
and registration to the external reference system. Sequential aerial photographs in a
flightline should be obtained with 60% endlap to allow for stereoscopic interpretationand to compensate for loss of coverage due to sun glint in the photographs. Sidelap
should be 30% to ensure contiguous coverage of adjacent flightlines and to produce a
block of aerial photographs which may be subjected to photogrammetric bundle
adjustment if necessary.

Knowledge of the study important to a successful project includes: plant species
comprising SRV, morphology and phenology of these plants, depth range andlocation of known habitat, types and locations of benthic features that may confuse
photointerpretation of SRV, seasonality of turbidity, weather, and haze, daily patternsin wind speed and direction, and progression of sun angle through the day.
5.2.2 Photo interpretation

Habitat defined by the presence of SRV can be interpreted from metric quality
aerial photographs exposed as recommended in the previous section. The
designation of a given area as SRV is a function of minimum detection unit, minimum
mapping unit, and its proximity to other SRV. Assuming a photographic scale of
1:24,000, high quality optics, high resolution film and ideal conditions (e.g. dense
seagrass growing on light-colored sediment in shallow, clear, calm water), it is usually
possible to have a minimum detection unit of 1 meter for SRV. All detected SRV which
appear to be in a continuum with adjacent SRV in an area which exceeds 0.03
hectare will be mapped in a single polygon. The minimum mapping unit is the
smallest area to be mapped as habitat. At the C-CAP map scale of 1:24,000, the C-
CAP standard minimum mapping unit is 0.03 hectare for SRV (i.e. a diameter of about
0.8 mm on the map represents a diameter of about 20 meters on the ground). Under
some conditions and photographic scales it may be possible and desirable to exceed
the 0.03 hectare minimum mapping unit. In any case, the minimum mapping unit for
each coverage should be specified.

Two types of surveys are required within one year of the photography to
characterize errors of omission and commission. Stratified random samples of
potential habitat are observed for accuracy assessment (omission). Other sample
sit̂  are selected from the photographs to verify the photointerpretation (commission).Surface level data are intended to augment the photointerpreted data based on
differentially corrected GPS positioning to a CEP of <5 meters. Accurate and currentp animetric base maps of coastal land features are essential for georeferencing
(establishment of geographic location) and scaling polygons of habitat interpreted
from aerial photographs. C-CAP recommends the most accurate and current base
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map available for the study area and the most cost effective technology to apply local
horizontal control of aerial photographs by comparison to the base maps. The base
map and technology may vary regionally.

The accuracy of the base map used for local horizontal control places a limit on
the accuracy of the C-CAP product. The two base maps broadly available are NOAA
shoreline and USGS 7.5' topographic maps. NOAA, National Ocean Survey
produces highly accurate shoreline maps based on tide-coordinated and fully rectified
photography (Ellis. 1978; Slamma, 1980; NOAA Photogrammetry Branch, 1989;Crowel! et al., 1991). When available and current, NOAA shoreline and coastal data
should be used for C-CAP projects.

5.2,3 Mapping, Digitization, and Change Detection

Polygons of habitat interpreted from aerial photographs are mapped into a
standard map projection coordinate system. The Universal Transverse Mercator
Projection is recommended. C-CAP protocol allows the polygons interpreted fromaerial photography to be transferred onto plainmetrically accurate basemaps using
three approaches:

1. Stereoscopically interpret the photographs and optically scale the
polygons and photographic image to fit planimetric horizontal control in
the basemap with a zoom transfer scope.

2. Process the aerial photographs to become plainmetrically accurate
orthophotographs, interpret and directly trace habitat polygons onto the
planimetric base map.

3. Delineate and simultaneously rectify and digitize habitat polygons using
an analytical stereo plotter.

Habitat polygons that have been transferred to the planimetric base map
according to procedures 1 or 2 above, require digitization to be incorporated irito the
C-CAP spatial database. Digitization normally is accomplished using a digitizing
tablet. The C-CAP objective of site specific change detection places greater emphasis
on accuracy and precision of spatial data than required in one-time inventories or
regional summaries of change. Methodology for monitoring site specific change on astatewide or regional scale Is a recent development (Ferguson and Wood, 1990; Orth
et al., 1991; Ferguson et al., 1993). Quantitative historical data, with possible
exceptions in Chesapeake Bay or spatially limited study sites, does not exist. C-CAPrecommends post-classification change detection for SRV. Post-classification change
detection can be accomplished graphically or polygons are digitized and compared
using a geographic information system to detect spatial displacement and quantify
change.
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6 . 0 R E C O M M E N D A T I O N S F O R A C C U R A C Y A S S E S S M E N T O F
C H A N G E D E T E C T I O N

Sampling to determine the accuracy of a change map is inherently different from
sampling for accuracy assessment of a one-point-in-time thematic map. The
fundamental difference between these two situations occurs because the change
categories usually represent a small portion of the original image, or thematic map.
For example, in Dobson and Bright's (forthcoming) study of the Chesapeake Bay,
approximately 3% of the area had experienced change over a five year period. The
relative scarcity of change polygons in the change map implies that these polygons
can be considered to be "rare" events that would only occasionally be detected using
traditional sampling techniques such as random sampling. This means that If we used
traditional sampling techniques to verify change, the confidence intervals on the
accuracy rates would be unacceptably large due to the small number of samples in
any category. In contrast, for assessing the accuracy of a one-point-in-time thematic
map, random, stratified random and systematic unaligned sampling schemes have
proven to be accurate means of estimating map accuracy (Congalton, 1988 and
1991). This section discusses the statistical methodology needed for assessing the
accuracy of land cover change detection.

6.1 General Considerations on the Applicability of Statistical Theory to
Accuracy Assessment o f Land Cover Change Products

When one is dealing with a clearly defined, objective, sampling process, in
which units are selected at random with known probabilities from some specified
statistical population, statistical theory can be valuable in selecting formulae for
estimating population parameters such as sums or means and their respective
variances. However, C-CAP's proposed approach to generation of land cover change
products is inherently complex and subjective. Subjectivity enters the process in the
selection of scenes considered suitable for inclusion in an analysis, in the
development of a land cover classification system, in the assignment of classes to
pixels or polygons, in the assignment of classes in field verification operations, in the
specification of spectral boundaries between land cover classes, and for that matter,
boundaries among land cover classes on the ground. Moreover, selections among
myriad alternative approaches for dealing with small areas of a given land cover type,
co-registration errors, and a host of other problems are intrinsically arbitrary and
subjective.

Whereas the subjectivity of aerial photointerpretation has generally been
recognized and accepted, the subjectivity of the process of developing land cover
products from digital data from satellite sensors has not. Perhaps this difference in
perception arises because photo interpretation is more of an analog, "Gestalt"
process, as opposed to the digital, "hard number" nature of the other. Indeed, the
quality of an interpretation of an aerial photograph is a direct reflection of the expertise
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of the interpreter and his or her familiarity, knowledge and understanding of land
covers for the region within the photograph. It should also be recognized that the
quality of a land cover product generated from satellite data is no less a direct
reflection of the expertise of the individual(s) producing the product. Thus, a land
cover product is necessarily a personal accomplishment. This in tum means that
estimates of accuracy do not generalize beyond the specific product in any kind of a
rigorous way.

Other considerations also suggest the idea of restricting accuracy to individual
products. For example, the geometrical size and complexity of land covers and the
heterogeneity of their spatial context can be expected to have a major influence on the
total number of misciassiflcation errors, as well as, of course, the number of possible
types of such errors. Obviously, regional-specific characteristics of land cover
preclude generalization of accuracy estimates beyond the boundaries of the region
sharing those characteristics.

Often, a goal of statistical analysis is to make inferences about one or more
parameters of a population on the basis of a sample. Normally, one doesn't know and
can't feasibly determine the true value of a parameter being estimated and thus can't
know how accurate a given estimate is. Statistical theory can however be used to
establish whether or not the formula used to compute the estimate is unbiased; i.e.
whether the expected value of the estimator equals the parameter. However, in
assessing the accuracy of a land cover product developed from remotely sensed data,
we are faced with the fact that we cannot compute expected values of estimates,
because additional complexities in the process of generating estimates preclude this.
These complexities include the intrusion of subjectivity into decision processes
alluded to above, but additionally include uncertainties that arise from the
measurement processes themselves, as discussed elsewhere in this document.
However, probably the most troublesome problem is the frequent absence of
reference data that might serve as unequivocal standards against which accuracy
could be measured. While field verification exercises might seem to provide such
data, practical experience indicates they often have not, because even trained
professionals on site don't always agree on what land cover class should be assigned
to the corresponding pixel/polygon on a land cover product. Further, assignments of
classes based upon on-site quantitative measurements of land cover are often at
variance with assignments based upon non-quantitative on-site assessment.

Errors in a land cover change product can arise through failure to detect change
from one class to another (errors of omission, "false negative") or through false
implication of change that did not in reality take place (errors of commission, "false
positives"). Both types' of error are important, but errors of commission are easier to
deal with simply because they will normally constitute a much smaller population of
pixels, a subset of those for which change in land cover was indicated. Errors of
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omission on the other hand reside hidden within the larger population of pixels for
which no change was detected.

Allocation of field sampling effort between the two types of classification error
will depend upon the relative areas of the "changed" and "no change" stratum. When
a product implies little change in land cover, it may be feasible to visit every site of
apparent change and ascertain the accuracy. A probability sampling design would
then be developed to assess errors of omission, the sampling frame consisting of
those pixels/polygons for which no change was implied. Apparent current land cover
classes could be used to delineate stratum. Allocation of sampling effort among strata
could be weighted to reflect relative "importance" of the difference classes to the
objectives of the overall program.

The design of the field efforts to estimate errors of omission in the change
detection should take advantage of ancillary information to stratify the sampling frame.
In the present case the frame is the population of pixels for which no change was
detected. After completion of the change analysis, fhose conducting the accuracy
assessment can seek ancillary information about where change either occurred or
was likely to have occurred during the relevant time period, and use this information
for subdividing the population of pixels into sets with varying likelihoods of having
experienced land cover change. Then allocation of sampling effort to the strata can be
accomplished to reflect the varying likelihoods of change, so that most of the effort is
expended on pixels most likely to have changed. Very substantial gains in efficiency
can be expected from such an approach, because most of the sampling effort will be
expended where the changes in land cover are most likely.

6 .2 Samp l i ng Des ign Cons ide ra t i ons fo r F ie ld Work

Before discussing statistical technicalities about sampling design for the field
work associated with accuracy assessment, it would seem appropriate to consider a
conceptual framework of the types of error that can arise in a post-classification
comparison to detect change. For simplicity our hypothetical classification of land
covers contain only three classes A, B, and 0. In the schematic below a capital letter
refers to the true land cover of a pixel within a scene. The corresponding small letters
refer to the class assigned to that pixel. Column headings of the matrix refer to the
base scene (Tb), whereas row headings refer to the same scene at Tb±i. The diagonal,
(upper left to lower right), 9-element cells of the matrix thus denote those cases in
which there was no true change in the land cover within the boundaries of a
hypothetical pixel. The six, off-diagonal, 9-element cells then represent those cases in
which there was real change in the land cover of the pixel.
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T,

A B C
a b c a b c a b c

a

A b
c

1 4 4

4 3 4

4 4 3

5 2 6

6 5 6

6 6 5

5 6 2

6 5 6
6 6 5

a

B b
c

5 6 6
2 5 6

6 6 5

3 4 4
4 1 4

4 4 3

5 6 6

6 5 2
6 6 5

a

C b
c

5 6 6
6 5 6
2 6 5

5 6 6

6 5 6
6 2 5

3 4 4

4 3 4
4 4 1

W i t h i n t h e m a t r i x :

1 = Correct no change 3
2 = C o r r e c t c h a n g e 6
3 = Incorrect no change 24
4 = Incor rec t change 48

With N (in this example, 3) classes of land cover, there are (in this example,
81) different possible outcomes of which N represent correct measurement of no
change in land cover and N2-N (in this example, 6) represent correct measurement of
change. Of the remaining possible outcomes, N^-N (in this example, 24) are errors of
omission (false negatives), and the rest (48) are errors of commission (false positives).

The matrix thus makes it easy to consider the various possible land cover
realities and corresponding land cover assignments for a pixel at the two times. For
example, at the base time a given pixel might in reality be class B, but be misclassified
as "a". In the other scene at a later time, the pixel might In reality be A, and correctly
classified as "a". Our hypothetical post-classification comparison would erroneously
indicate no change, "a" to "a", when in reality the land cover had changed from "B" to
"A". This case then would represent one of the possible errors of omission.

in the matrix numbers have been entered to encode the nature of the various
possibilities relating to the actual land cover within the boundaries of a map pixel over
time and the assignments of the land cover to classes. A "1", for example, denotes a
pixel where the land cover did not change, and the pixel was assigned the correct
land cover class at both times. A "2" denotes a pixel where the land cover did change,
and as before, the pixel was correctly classified on both occasions. A "3" denotes a
case where there was no change in the land cover, but the pixel was assigned to the
same incorrect land cover class on both occasions. A "4" refers to the situation in
which there was no change in the land cover, but the pixel was mis-classified at one or
both of the two times. A "5" refers to a case where the land cover changed but,
because the pixel was assigned to the same incorrect class on both occasions, no
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change was detected. Finally, a "6" denotes a pixel where the land cover changed,
and the assigned land cover classes changed, but the land cover class was incorrect
on one or both occasions.

It is instructive to recall that if, for a given pixel, the probability of assigning it to
its correct class is, say, 0.90 at time Tb and, say 0.95 at time Tb+i and if outcomes in the
two time periods are statistically independent, then the probability that both
assignments of land covers are correct is their product, 0.855, implying that the
accuracy of a change detection product will be less than the accuracy of either of the
land cover products used to generate it.

Rigorous accuracy assessment thus must be prospective and carefully planned
with adequate allocation of resources to the work on the ground. The land cover
measurement process on the ground must be one that will lead to unequivocal
answers concerning the appropriate class for a given pixel, and be definable such that
the classes are mutually exclusive and the set of classes is exhaustive.

It should be bome in mind that to some extent the goals of accuracy assessment
and production of an accurate change detection product are contradictory. This is
because accuracy of the change detection product could be increased by
incorporating information gained during the on-site evaluations of classification
accuracies. But, if this is done, then accuracy of the change detection product
becomes an elusive moving target. Accuracy would increase as one attempted to
estimate it and thus become a function of how much effort is put into the accuracy
estimation process.

A case can be made for maintaining independence between the classification of
the remotely sensed data and the operations on the ground to assess the accuracy of
the classified scene. Otherwise, any attempt to detect change in land cover on the
ground by repeated measurement of pixels at Tband again at Tb̂ .i (and thus directly
measure accuracy, of change detection by remote sensing) will be compromised by
the special knowledge of those pixels by the Individual(s) using the remotely sensed
data for classification purposes.

As we have seen, inaccuracy can be subdivided into attribute error and
positional error. Similarly, a case can be made that the ground (field) operations for
assessing accuracy might be subdivided in a parallel fashion. For example, positionalerror involves mispositioning of boundaries. One might therefore argue that the most
efficient sampling unit for assessing the accuracy of an ecotone boundary (one-
dimensional) would be a line transect (one-dimensional). Conversely, a land cover isat least two-dimensional, and therefore a two dimensional sample unit would be more
appropriate and efficient. When there are only two classes to deal with (e.g. SRV or its
absence), then the problem is simplified to defining the boundaries between the two
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classes and therefore a line transect would be the sample unit of choice. A line
transect would offer the accuracy assessment team in the field the additional
opportunity to obtain data on the width of transitional ecotones where one class
grades into another (a direct measure of fuzziness, if you like).

6 .2 .1 Sampl ing Des ign Gu ide l ines fo r On-S i te Determinat ions o f
L a n d C o v e r

1. The design should address both errors of commission and errors of omission at
Tb and Tb+i, as well as for the change detection product.

2. Allocation of effort should ensure distribution of effort across the entire scene.
This can be accomplished by subdividing the scene into geographically defined
strata. Additional stratification factors might include physiographic
characteristics, degree of urbanization, likelihood of future development, etc.

3 . R a n d o m s e l e c t i o n o f s i t e s ' o n w h i c h l a n d c o v e r w i l l b e m e a s u r e d s h o u l d b e
based upon unequal probability sampling to reflect overall priorities of the C-
CAP program.

4. If the amount of change detected is relatively little, then assessment of errors of
commission might efficiently proceed on the basis of including to the extent
possible all change pixels for on-site land cover measurement. For large areas
this task may become impossible.

5. Consideration should be given to selecting some sites/pixels for measurement
at both Tb and Tbti to take advantage of the expected serial (temporal)
correlation in land cover at a given site.

6. The importance of approximate concurrence in ground and satellite data or
aerial photography cannot be over emphasized.

7. Thorough training of field crews must precede the collection of the reference
data for accuracy assessment.

8. Rules must be developed and rigorously followed for inclusion/exclusion of
selected sites which fall on ecotones and thus are mixtures of two or more land
cover classes. We note that mixed pixels cannot be incorporated into the
a b o v e m a t r i x .

9. The accuracy assessment process is dependent upon the exact location of
pixel/polygon boundaries on the ground.
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6 . 3 S a m p l e D e s i g n D e s c r i p t i o n

As previously noted, sampling to determine the accuracy of a change map is
inherently different from sampling for accuracy assessment of a one-point-in-time
thematic map because the change categories usually represent a small portion of the
original image, or thematic map. For change detection accuracy assessment
traditional sampling techniques cannot usually be employed. The main reason that
they are not used is because of the substantial cost of establishing "permanent"
sampie locations that can be revisited through time. In addition, the optimal allocation
of samples for each of the change categories would be different than the optimal
allocation of samples to the original thematic classes and additional sample points
would be needed over the original base of "permanent" sample points. This is largely
because the change polygons cover only a small portion of the original image and
would not be well detected with, say, random sampling! Because of these limitations
we are proposing another approach to sampling for the accuracy of a change map. To
do so we need some simple notation as follows:

Category D e fi n i t i o n

Tc true change
Tn true no change
P n c — predicted no change correct
Pai predicted no change, but with incorrect class label
Pci incorrectly predicted change
P c c = = correctly predicted change

[1] Tfi-Pnc — true no change; correctly predicted no change [correct no change]
[2] Tc"Pcc — true change; correctly predicted change [correct change]
[3] Tn"Pni ~ true no change; incorrectly predicted no change class [incorrect no change]
[4] Tn"Pci — true no change; incorrectly predicted change [incorrect change]
[5] Tc-Pn i = true change; incorrectly predicted no change
[6] Tc"Pc i ~ true change; incorrectly predicted change

Classes [1] through [6] of this table and the table in §6.2 are directly equivalent.

By following the procedure outlined in Section 5.5 for Change Detection
Algorithms the analyst will produce a Change Map and a No Change Map. We
can utilize this dichotomy to achieve real sampling efficiencies as will be shown. The
following Table shows the components that can be estimated In each of the two strata
types (Change and No Change).

4 6



R e f e r e n c e d a t a

True no change (Tn) True change (Tc) Strata

Predicted no change class
correct (Pnc)

Predicted no change class
incorrect (Ppj)

[1] VPnc

[3] Tn-Pni
false negative

[5] Tc-Pni
false negative

No change

No change

Predicted change class
incorrect (Pci)

Predicted change class
correct (Pec)

[4] Tn-Pci
false positive

[6] Tc-Pci
false positive

[2] TC-Pqc

Change

Change

These sources of error can also be depicted using a change detection error matrix
which is presented in more detail in sections 6.2 and 6.8

Change Detection Error Matrix and Sources of Error

R e f e r e n c e D a t a

P r e d i c t e d
No Change

P r e d i c t e d

Change

No Change Change

A A B B C C A B A C B A B C C A C B

A A 1 3 3 cn cn cn cn cn cn
B B 3 1 3 5 5 5 5 5 5

C C 3 3 1 5 5 5 5 5 5

A B 4 4 4 2 6 6 6 6 6
A C 4 4 4 6 2 6 6 6 6
B A 4 4 4 6 6 2 6 6 6
B C 4 4 4 6 6 6 2 6 6
C A 4 4 4 CDCMCDCDCDCD
C B 4 4 4 6 6 6 6 6 2
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6.3.1 The (predicted) No Change Strata

It is interesting to note that different components of change detection can be
assessed within each of the two Strata - predicted Change and predicted No
Change. The (predicted) No Change Stratum is by far the largest stratum, generally
encompassing over 90% of the original image, or thematic map. For this dominant
stratum it is possible to estimate three components of change denoted as [1], [3], and
[5] in the above table. These components are for the majority case (predicted no
change when there truly was no change (case[1]), and for the lesser occurrences of
predicted no change, but of the wrong no change class (case[3]), and (case [5])
predicted no change when there was change.

The sampling of these two components of the predicted Change and the
predicted No Change Strata can be done following standard techniques as outlined in
Congalton (1988, 1991) including random, stratified random, and systematic
unaligned designs provided that none of these components are rare events (say
<10%). Guidelines on determining sample sizes and in sampling strategies are
discussed in more detail below.

We are proposing two different sampling strategies - one for the Change
Stratum and one for the No Change Stratum.

Because of the costs of estimating the rates of each of these components (to a
given level of precision) it may make sense in some instances to combine classes.
For example, we might decide that we really only care about components [1] and [5] in
the No Change Stratum. If we did this, we would be essentially combining classes [3]
and [1]. That is we would try to detect true no change when there was predicted no
change, but the type of no change could be incorrect. In this simplified case we are
able to utilize a binomial distribution (Cochran, 1977) of pixels within the No Change
Stratum for determining variance and the associated sample size needed to achieve a
desired precision level.

The binomial case is presented in the event that only 2 of the 3 components in
either stratum are to be estimated. However, in most instances we would want to
estimate all three components of the No Change Stratum (or the Change Stratum).
Then the multinomial formulae presented for the Change Stratum in the next section
can be used. Of course, the extension of the binomial to multiple categories is the
mult inomial distr ibut ion.

Binomial Sampling and Sample Size Determination

For the binomial distribution the probability that a sample of n units contains a
units which are of true no change type is:
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Pr (a ) = p a * q n-a * pi
a ! * (n -a) !

L e t p = a / n a n d q = 1 - p

Then v(p) = E 2_
n - 1

[6] n=lLjLEJLg_
5 2

The variance function is greatest when the population is equally divided
between the two classes and is symmetrical about this point. The standard error of p
changes relatively little between 0.3 < p < 0 .7. However at p < 0.3 or p > 0.7 the
sampling effort .needed to reduce the standard error of the estimate to a desired level
decreases rapidly. This is because the converse of a small' p, say p=0.1 is a large q
value (q=1 -p) which in this case is 0.9. In equation [6] 5 is the half width of the desired
confidence interval, which we will also refer to as error tolerance.

For example if t = 2, p = 0.9 = the approximate probability of true no change in
the (predicted) No Change Stratum, the half width of the confidence interval 5 = 0.03 ,
and q = .10 then we need

o 2 * n q * n 1
n = ' = ' — = 4 0 0 s a m p l e s

,03 2

Rather than trying to achieve one absolute tolerance limit it is often better to
specify varying levels of precision for the different possible values of p. For example
we might want to estimate 0.3 ̂  p ̂  0.7 within a tolerance 5=.05; 0.1 ̂  p < 0.3 within
an error tolerance 5 =.04, and for p < 0,1 within an error tolerance 5=0.03. The choice
of error tolerances (5) depends upon the relative importance of obtaining highly
precise numbers given the importance of the ecological area under investigation and
the cost of obtaining the samples. Another way to approach this problem is to
estimate a population proportion with a coefficient of variation of c or less, rather than
specifying a tolerance level as in equation [6]. The sample size required to achieve
this is given by:

n >

p*c2
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The sample size needed to achieve a specified coefficient of variation (c) decreases
as p increases. At small values of p, a very large sample size is needed to meet the
precision requirements. When p < .10 we usually consider the item to be rare in the
population. Using a coefficient of variation (c) of 5% and p values of 0.9, and 0.1
respectively in equation [7] we obtain sample sizes of 44, and 3,600, respectively. By
changing the coefficient of variation requirement to 15% the sample size decreases to
400 for p equal to 0.1. Obviously the choice of the coefficient of variation c, like the
choice of the error tolerance 6, has a large impact on the required sample and needs
to be judiciously chosen.

6.3.2 The (predicted) Change Stratum

The (predicted) Change Stratum is considerably smaller than the No Change
Stratum and this gives us some advantages for sampling. For the Change Stratum we
need to estimate three components of change denoted as [2], [4] and[6] in the previous
table. The components associated with the (predicted) No Change Stratum are;
incorrectly predicted change when there was no change (case [4]), correctly predicted
change but of the wrong kind (case [6]), and correctly predicted change (case [2]).

The real advantage of partitioning the image, or thematic map, into Change and
No Change Stratum is that we can conduct different kinds and intensities of
inventories on these two Strata. The Change Stratum allows for concentrated
sampling since the areas of change are usually clustered in specific locations within
an image. It may be possible to conduct the sample survey for this Stratum using a
helicopter to cover the Change Stratum in a minimum amount of time while visiting a
maximum number of locations.

Because we need to estimate three components we no longer can use the
binomial distribution, but rather the multinomial, it should be evident that in this
simplistic appraisal we have tried to estimate only a total of 6 components of the
Change Detection Error Matrix as specified in the two tables above. Of course, we are,
in likelihood, interested in each of the 31 (9 by 9) components of the Change Detection
Error Matrix presented in the example. In that matrix there are 9 elements contained in
the No Change (predicted and actual) portion of the matrix (components [1] and [3]; 18
elements associated with component [5]; 18 elements associated with component [4];
and 36 elements associated with components [2] and [6]. We would utilize the
multinomial distribution in deciding the sampling intensity needed to achieve a
specified level of precision whether we are interested in all 27 elements of the
predicted No Change matrix or in estimating only the 3 summary components of the
predicted No Change matrix ([1], [3], and [5]). Likewise, in the predicted Change
matrix in the example given, we would utilize the multinomial sample size formula in
estimating the 54 elements of the Predicted Change matrix, or in estimating the 3
summary components ([2], [4], and [6]). The possible rationale for estimating only the
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summary components is that it requires significantly less sampling than for estimating
each of the individual elements of the change matrix. It is expected that in most
instances it is desired to estimate all elements of the Change Detection Error Matrix, In
either event, we would use the formula presented below.

Tortura (1978) gives a procedure for determining the sample size required for
simultaneous confidence intervals for parameters of the multinomial distribution which
utilizes the approximate large sample equations for the confidence limits. The sample
size n is given by:

^ = P * C i - p )
52

where Sis the half width of the desired confidence inten/al, and k=3 which is the
number of categories in the Change Stratum (components [2], [4] and [6]). The Chi-
Square value is approximately 4.6 for an a level of 0.10 with k=3 categories
(components [2], [4], and [6] of the predicted Change Stratum), if the half-width ( 5) of
the confidence interval is set to 5=0.10 some sample sizes for different values of p and
k are given below:

Sample sizes (n) as a function of the true probability of occurrence (p) of a category
and the number of categories being estimated for a=0.10 and 5=0.10.

Multinnmial .Sampling Multinomial Sampling B i n o m i a l S a m o l i n o
k = 54 categories k = 3 categories k = 2 categories
Z 2 = 7 . 9 Z 2 = 4 . 6

p n = sample size n = sample size n = sample size
0 . 1 7 1 4 1 3 6
0 . 3 1 6 6 9 7 8 4
0 . 5 1 9 8 1 1 5 1 0 0
0 . 7 1 6 6 9 7 8 4
0 . 9 7 1 4 1 3 6

When each p has a different half-width (5) then a separate calculation is made
for each p and the largest n is selected as the desired sample size. When only one
half-width Is required, then the sample size is calculated for the proportion nearest to
0.5. This provides for a conservative estimate of sample size since the largest sample
size is required exactly at p=0.5. It is clear that sample size needed to achieve a given
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level of precision increases as the number of categories (elements of the matrix) being
estimated increases. However, the increase in sample size is not proportional to the
increase in the number of categories for which accuracy assessment are required.

We have already discussed how estimating all the elements of the predicted
Change Stratum (or the predicted No Change Stratum) requires more sampling than if
we are willing to ignore the specific "from-to" nature of the errors. For example if we
only estimate the summary components of error ([1], [3], and [5] of the predicted No
Change Stratum, and [2], [4], and [6] of the predicted Change Stratum) we would
reduce the number of categories in the predicted No Change matrix from 27 to 3, and
the number of categories in the predicted Change Stratum would be reduced from 54
to 3. This substantially reduces the amount of field sampling required. In the table
above, the number of samples required to estimate a category with a true p=0.5 and a
confidence interval half-width equal to 0.10 when there are 54 categories is 198, the
sample size needed using the binomial distribution. If, as before, there are p=0.5
correctly classified pixels that we want to estimate with a confidence interval half-width
of 0.10 we need n=100 samples with binomial sampling. Thus reducing from 3 to 2
categories only produces minor sampling efficiencies. The greatest gain is from
reducing 54 to 3 categories under the Multinomial sampling model. Nonetheless we
expect that the normal case will be that we want to estimate all elements of the
Change Detection Error Matrix.

6.3.3 Overall Sample Design

To help ensure that the sampling is distributed throughout the region of study it
is recommended that a geographically based multistage Stratified random sample
(SRS) be taken of the entire area for estimating the accuracy of the No Change
Stratum. In this setup the study area is broken up into several subregions along
biophysical and ecological criteria. From within each subregion orthophoto
quadrangle sheets, for example, could be chosen at random. Then from within a
quadrangle, quarter-quadrangles are randomly selected and field plots are selected
randornly or with a systematic unaligned sampling scheme. Plot sizes will vary
according to the ecological class under investigation. However, given the registrationerrors in image processing the field plots should be approximately 3x3 pixels In size
where possible to ensure that the sampled plot truly encompasses the designated
sample selection point on the map or image.

For estimating the accuracy of the Change Stratum, we can do concentrated
saryipling using a helicopter to cover the Change Stratum in a minimum amount of timewhile visiting a maximum number of locations. Because the change areas tend to be
concentrated in places such as urban centers, fringes of urban centers, or in rural
forested areas in specific locales, it may be possible to designate a buffer region
around these centers where we suspect change activity would take place. These
buffers would then be added, so to speak, to the predicted change areas which are
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being more intensively sampled. We know that we can get better estimates of cases
[1], [3] and [5] because they occur on a smaller area and we can sample them more
intensively. By considering these buffer regions of "potential change" for more
intensive sampling than they would normally achieve, we could improve on our ability
to assess the accuracy of false negatives - finding true change when it has not been
predicted, (case [5]).

6 . 4 R e f e r e n c e D a t a C o l l e c t i o n

A critical component to any accuracy assessment is the need for accurate
reference data. If the reference data are poor or improperly collected, then the entire
assessment becomes meaningless. If the reference data has significant error
associated with it, then it should not be used as reference data. Reference data
should be collected using the same classification scheme that was used for the
remotely sensed data. It should also be applied over the same minimum mapping unit
as was applied to the remotely sensed data. In many instances, it is enough to simply
make obsen/atlons to determine the reference data; for example, the species of
vegetation or the presence/absence of a certain factor. In other cases, actual
measurements are required. In either case, sampling within the area of interest
(polygon) is required in order to obtain the proper reference label. A sufficient
number of samples must be acquired within each polygon to assure proper labeling. If
too small a sample is taken then the label may be Incorrect due to some inclusion in
the polygon that was smaller than the minimum mapping unit, but was included in the
sample. Finally, the reference data should be as objective as possible. An important
mechanism for promoting objectivity is to use a reference data coilectlon form to force
all data collectors through the same collection process.

Reference data collection sheets are important for a number of reasons. As
already mentioned, they should be designed to make the data collection as objective
as possible. The form should lead the collector through a quantitative process to a
definitive answer from the classification scheme. Figure 2 provides an example of a
flow-chart that guides the field crews through the logic of the decisions necessary to
arrive at the determination of the attribute label of the particular location under
investigation. It also provides a means of performing a quality assessment/quality
control check on the collection process. Obviously, the complexity of the reference
data collection sheet Is dependent on the level of the classification scheme.

Reference data collection sheets, regardless of their complexity, have some
common components. These include: (1) the name of the collector and the date of the
collection, (2) locational information about the site, (3) some type of table or logical
progression that represents what the collector is seeing, (4) a place to fill in the actual
category name from the classification scheme, and (5) a place to describe any
anomalies, any variability, or interesting findings at the site. The project-specific
list of attributes on field sheets needs to be developed on case-by-case basis.
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Figure 2 Flow Chart for Guiding Reference Data Collection.
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It Is important to realize that certain types of land cover changes can be
confirmed easily and cheaply by direct visual inspection, while others require detailed
quantitative field measures. For example, conversion of forest to a shopping center
(urbanization) requires only visual inspection. Other types of changes will entail
greater expense and effort because they will require on site measurement of
characteristics such as vegetation cover percent, soil moisture, or salinity. For those
parameters requiring quantitative measurement a design for determining the number
of samples to take within a polygon (land cover class) and the exact measurements to
be taken needs to be explicitly undertaken.

6 . 5 P o s i t i o n a l E r r o r I s s u e s a n d R e c o m m e n d e d P r o c e d u r e s

At several points in the change detection and accuracy assessment procedures,
it will be necessary to identify the locations of specific points on the Earth's surface
accurately. Specifically, accurate methods will be needed for determining the
locations of: control points on TM scenes; the same control points on topographic
maps; and pixels and polygon boundaries on the ground.

Errors in positioning can lead to false positives and false negatives in change
detection, if a pixel at Tb is mismatched to a differently located pixel at another time.
Errors in positioning can also lead to errors in accuracy assessment, if a pixel or
polygon is compared to an incorrect location on the ground.

On a TM scene, all spatial variation within pixels is lost. At best, positional
accuracy for a well-defined object such as a road intersection is 0.5 pixels, or 15m.
However, for objects larger than 0.5 pixels, or for poorly defined or indistinct objects,
positional accuracy can be much poorer. The physics of the detector can produce an
apparent positional error of as much as 2 pixels, as the detector takes time to respond
to sharp changes in contrast during its scan. In summary, the positional accuracy of an
object detected in a TM scene varies between 15m and 60m, depending on the
sharpness of definition and spatial and spectral extent of the object.

Errors due to misregistration of TM scenes can be reduced by careful selection
of control points. These should be small, well-defined objects such as road
intersections or buildings, and should be widely distributed over the scene. The more
control points used, the greater the positional accuracy. It is heipful if software used for
registration allows access to the residual positional errors at each control point, as
these can often help to identify mistakes in identifying controls, or errors in positions.

The positional accuracy of a topographic map is established by the producing
agency, normally in the form of a CMAS. The 1:24,000 topographic maps produced bythe US Geological Survey are the most likely to be used for scene registration as
sources of control point coordinates, because they are the largest scale base mapping
available over the continental US. On topographic maps at a scale of 1:24,000 a
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CMAS of 0.5mm corresponds to a distance of 12m on the ground. Thus, the accuracy
of TM registration to a 1:24,000 map ranges from 17m to 72m depending on the
degree of definition of the object being used as control point, assuming, of course, that
no blunders have been made in identifying objects. In some regions of the country,
section corners can be identified relatively easily to form a network of well-defined
points for image registration. The presence of blunders can sometimes be detected by
examining residuals, as suggested above.

When one TM scene is registered to another, some of the sources of positional
error are not present, and it can be easier to achieve high accuracy. A positional
accuracy of 0.5 pixels, or 15m, is routinely achieved in scene registration.

Accuracy assessment requires the identification of objects on the ground. As
before, this is relatively straightforward if the object is comparatively unique and well-
defined, such as a street intersection, although blunders are always possible because
street names are invisible from space. But-accuracy assessment requires the accurate
location of randomly chosen pixels, and polygons which may have no obvious
expression on the ground. In broad terms, two methods are available for accurate
positioning of field check{s): (1) the global positioning system (GPS), a satellite-based
system for direct measurement of position in Earth coordinates, including UTM; and (2)
positioning relative to well-defined objects that can be found on the ground, such as
road intersections or buildings. The use of GPS may be limited under forest canopy
and when terrain is obscure.

At this time, the accuracy of GPS varies widely depending on the particular
implementation of the technology.

a. Hand-held GPS routinely (95% of single point non-differentially
corrected fixes with selective availability active) achieves accuracies of
100 m CEP (circular error probable).

b. Differential hand held GPS (95% of single point, differentially corrected
fixes with SA active 10m CEP) is generally available In the coastal US
and real time availability is scheduled via Coast Guard broadcasts.

c. The fixed receiver (12 channel upgrade of 6 channel) can be on a
monument or positioned by survey to monuments and permit differentially
corrected accuracies of 5m CEP (95% of single point fixes).

If field checks are positioned relative to well-defined field objects, positional
accuracy depends on the positional accuracy of the reference objects, as well as on
the system of measurement used to establish relative position. In a field situation, it is
unlikely that the latter will be better than simple pacing, or ocular estimates. Moreover,
blunders are common in this situation, such as when an object is misidentified, or the
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wrong point is found on a linear object such as a shoreline. Previous accuracy
assessment by C-CAP found it almost impossible to achieve adequate positional
accuracy of field checks in some areas, particularly coastal wetlands. Thus, the
positional accuracy of a field check location established by this method is likely to be
substantially worse than the positional accuracy of the topographic base map.

Because of these problems, the preferred method for locating field sites at this
time is differential GPS, with the fixed receiver located at a geodetic control monument.
Care should be taken to ensure that the datum used by the GPS positioning matches
that of the topographic base map used for image registration; NAD83 is
r e c o m m e n d e d .

6.6 Boundary Effects and Recommended Procedures for their
M i n i m i z a t i o n

Implicit in the C-CAP change mapping program is the assumption that the
surface of the Earth can be divided into areas of uniform land cover class, separated
by sharp lines. As noted earlier, this assumption approximates the truth to varying
degrees. Some classes, such as water, are relatively well-defined and spatially
homogeneous. Other classes may grade continuously at their borders, and mayinclude significant and substantial heterogeneity.

As noted in section 4, where the concept of error was introduced, there are
various views of what constitutes "accuracy" in the context of land cover mapping. In
the, "pixel" view, a land cover map provides an estimate of the land cover at every
point, and its accuracy is determined by the proportion of pixels found to be correctly
classified, based on a ground check or source of high accuracy. In the "polygon" view,
a land cover map is a collection of classified polygons each enclosing a minimum
number of pixels, the minimum mapping unit, and its accuracy is determined by the
proportion of polygons found to be correctly classified. In this view, since a polygoncan have only one class, inclusions or heterogeneities within polygons, less than the
minimum mapping unit, and blurred boundaries, are generalization not errors.

The proposed method of accuracy assessment falls into the second, or
polypn" view. A sample of polygons will be chosen, and their classificationschecked in the field. A polygon will be declared correct if the field check produces the

same classification. Since many polygons will not have sharply defined boundaries,
and will contain inclusions (less than the minimum mapping unit) of other classes, it
will be necessary for the field procedure to generalize at boundaries and inclusions,
with the minimum mapping unit in mind in making an assessment. Locations near
polygon boundaries should be avoided as far as possible given the problems of field
positional accuracy. Polygons should be assessed using appropriate averaging
methods designed to generalize away small inclusions.
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6 . 7 E r r o r M a t r i x G e n e r a t i o n a n d A n a l y s i s

Generation of an error matrix is recommended for quantification and
interpretation of errors for change detection purposes.

An error matrix as defined by Congalton (1991) is a square array of numbers
which express the number of sample units (i.e., pixels, clusters of pixels, or polygons)
assigned to a particular category relative to the actual number in that category as
verified on the ground. The columns usually represent the reference data and the
rows indicate the classification generated from the remotely sensed data. An error
matrix is a very effective way to represent accuracy in that the accuracies of each
category are plainly described along with both the errors of inclusion (commission
errors) and errors of exclusion (omission errors) present in the classification.

The error matrix can then be used as a starting point for a series of descriptive
and analytical statistical techniques. Perhaps the simplest descriptive statistic is
overall accuracy which fs computed by dividing the total correct (i.e., the sum of the
diagonal) by the total number of sample Units in the error matrix. In addition,
accuracies of individual categories can be computed in a similar manner. However,
this case is a little more complex in that one has a choice of dividing the number of
correct samples in that category by either the total number of samples in the
corresponding row or the corresponding column. Traditionally, the total number of
correct samples in a category is divided by the total number of samples of that
category as derived from the reference data (i.e., the column total). This accuracy
measure indicates the probability of a reference samples being correctly classified and
is really a measure of omission error. This accuracy measure is often called
"producer's accuracy" because the producer of a classification is interested in how
well a certain area can be classified. On the other hand, if the total number of correct
samples in a category is divided by the total number of samples that were classified in
that category, then this result is a measure of commission error. This measure, called
"user's accuracy" or reliability, is indicative of the probability that a sample classified
on the map/image actually represents that category on the ground (Story and
Congalton, 1986).

In addition to these descriptive techniques, an error matrix is an appropriate
beginning for many analytical statistical techniques. This is especially true of the
discrete multivariate techniques. Starting with Congalton et al. (1983), discrete
multivariate techniques have been used for performing statistical tests on the
classification accuracy of digital remotely sensed data. Since that time many others
have adopted these techniques as standard accuracy assessment tools (e.g.,
Rosenfield and Fitzpatrick-Llns, 1986; Hudson and Ramm, 1987; Campbell, 1987).
Discrete multivariate techniques are appropriate because remotely sensed data are
discrete rather than continuous. The data are also binomially or multinomially
distributed rather than normally distributed. Therefore, many common normal theory
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statistical techniques do not apply.

Another discrete multivariate technique of use in accuracy assessment is called
KAPPA (Cohen, 1960). The result of performing a KAPPA analysis is a KHAT statistic
(an estimate of KAPPA), which is another measure of agreement or accuracy. The
KHAT statistic is computed as

" ' -EC', .* ' , , )
/ = !

where r is the number of rows in the matrix, xa is the number of observations in row /
and column /, Xj+ and x+j are the marginal totals of row / and column /, respectively, and
N is the total number of observations (Bishop et al., 1975). The equations for
computing the variance of the KHAT statistic and the standard normal deviate can be
found in Congalton et al. (1983), Rosenfield and Fitzpatrick-Lins (1986), and Hudson
and Ramm (1987), to list just a few. It should be noted that the KHAT equation
assumes a multinomial sampling model and that the variance is derived using the
Delta method. In addition to being a third measure of accuracy, KAPPA is also a
powerful technique in its ability to provide information about a single matrix as well as
to statistically compare matrices.

6.8 Visualization and interpretation of Change Error Matrix

The change error matrix will have the same characteristics as the traditional
classification error matrix, but will assess errors in changes between two time periods
and not simply a single classification. An example shown below in Figure 3
demonstrates the use of a change detection error matrix.

Figure 3 shows a single classification error matrix for three vegetation/land use
categories (A, B, and C). The matrix is of dimension 3x3. The major diagonal of this
matrix indicates correct classification. In other words, when the classification indicates
the category was A and the reference data agrees that it is A, then the [A,A] cell in the
matrix is tallied. The same logic follows for the other categories B and C. Off-diagonal
elements in the matrix indicate the different types of confusion (called omission and
commission error) that exist in the classification. This information is helpful in guiding
the user to where the major problems exist in the classification. Figure 3 also shows a
change detection error matrix for the same three vegetation/land use categories (A, B,
and C). Note that the matrix is no longer of dimension 3x3 but rather 9x9. This is
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Figure 3 A comparison between a single classification error matrix and a change
detection error matrix for the same vegetation/land use categories.



because we are no longer looking at a single classification but rather a change
between two different classifications generated at different times. Therefore, the
question of interest is, "What category was this area at time 1 and what is it at time 2?".
The answer has 9 possible outcomes (A at time 1 and A at time 2, A at time 1 and B at
time 2, A at time 1 and C at time 2,..., C at time 1 and C at time 2) all of which are
indicated in the error matrix. It is then important to note what the remotely sensed data
said about the change and compare it to what the reference data indicates. This
comparison uses the exact same logic as for the single classification error matrix, it is
just complicated by the two time periods (i.e., the change). Again, the major diagonal
indicates correct classification while the off-diagonal elements indicate the errors or
c o n f u s i o n .

Some other very interesting statistical difficulties result from the generation of
the change detection error matrix. As noted in Figure 3, a three category, single
classification error matrix means a nine category, change detection matrix. This
problem is only compounded as the number of categories increases. Problems with
sampling to build the matrix and especially sample size quickly become critical. See
section 6.3 for the statistical formulae needed to calculate sample sizes as a rule of
thumb for error matrix generation. The cost of collecting the reference data for these
samples can quickly become prohibitively expensive. Therefore, it is obvious that all
possible changes may not be included in the change detection error matrix.
Fortunately, not all changes are of the same importance and the most critical ones can
b e i n c l u d e d .

As described, the change detection error matrix can be an effective way of
quantitatively assessing the accuracy of a change analysis data set. All the analysis
techniques developed for the single classification error matrix are applicable,
especially the Kappa analysis (Congalton et al., 1983) which will allow for the
determination of statistical significance of the changes.

7 . 0 S U M M A R Y O F L I M I TAT I O N S

The general limitations of the procedures recommended in this report include,
but are not limited to the following;

Methods for tracking the 'lineage' of each file used in a change detection (two
single date classifications and a change detection file) must be developed. Without
such information, the error evaluation is incomplete because it may not be possible to
replicate the results of the change detection analysis. The errors in the reference data
also become a compounding factor.

There is relatively little experience dealing with large multi-temporal high
resolution remote sensor datesets used for change detection. Additional work with
such datasets will lead to improved perspectives on change detection error evaluation

6 1



problems. We may not be addressing some of the more important problems simply
because our scientific community does not have sufficient experience as of this writing.

Most remote sensing land-based change detection projects are based on
radiometricaliy corrected satellite remote sensor data. Unfortunately, only water-
related studies interested in monitoring suspended sediment, chlorophyll etc. correct
the data. To conduct truly accurate digital change detection, It is probably necessary
to apply radiative transfer atmospheric and bl-directionai reflectance corrections (e.g. if
off-nadir SPOT data are used) to the remote sensor data used in the change detection.

Highly accurate change detection ideally requires calculation of at surface
reflectances. This requires a highly accurate digital elevation model (especially in the
coastal zone), a detailed library of bidirectional reflectance factors, a per-pixel
atmospheric correction (including thin clouds) and precise knowledge of solar
elevation and azimuth. Of these, only the solar angles are presently well
characterized. One can expect, however, that as the EOS program develops, we will
have both the appropriate satellite systems and the ancillary data (OEM's and BRDF's,
etc.) to calculate at surface radiance values and reflectance with sufficient date-to-date
precision for change detection purpose.

EOS, however, will not solve the problem of insufficient return frequency to
enable to detect change In features with both high temporal and spatiai frequencies.
Those sensors (e.g. MODIS) which observe with high spectral and temporal
frequencies (every 2 days) have relatively large pixel sizes (250 m to 1 km). Landsat 7
(and the follow-on advanced Land Remote Sensing System) is pianned to remain on
a 16-day cycle. Higher spatiai resolution commercial systems are also proposed, but
their swath widths preclude high repeat cycles. At this writing, no constellation of
calibrated, nadir viewing, high spatial resolution systems have been funded. Unless
there is a major change in funding for foreign or U.S. remote sensing satellites a major
limitation for change detection will remain to be our inability to match plant phenology,
cloud cover, atmospheric turbidity, and satellite overpass for multiple dates in major
portions of the earth. This limitation Is particularly important in the U.S. coastal zone
areas involving the areas of interest to C-CAP.

Different sampling schemes have been proposed for the Change and No
Change Strata. More intensive sampling of the predicted Change Stratum is
recommended than for the No Change Stratum. Because more intensive, or even
exhaustive, sampling in the Change Stratum is proposed a reasonably good algorithm
for producing the Change Map is needed. If the Change Stratum is either too large or
too small sampling efficiencies will be lost. Thus, the quality of the algorithm used to
predict change has a direct impact on the success of the sampling protocol.

In the case of using a very conservative algorithm to identify potential change it
is obvious that it would produce too few candidate change pixels. This will result in a
very large No Change Stratum. If this happens then it will be very difficult to find false
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negatives (true change when there was no change predicted) because these can be
considered rare events which are not well represented by simple random sampling or
systematic sampling techniques.On the other hand, if a very liberal algorithm Is utilized
to identify potential change then a large Change Strata will be generated. Because
intensive sampling for this Stratum is recommended the costs of sampling would
become prohibitively large.

Limitations for change detection of submerged land cover have to do with
quality of the photographic image (water penetration, contrast of vegetated and
unvegetated bottom, and deviation of photographic axis from vertical) certainty of
habitat signatures in the images, and accuracy of the base map for registration of the
photographic data. Field data is limited by ambient conditions (which can seriously
restrict the quality of field obsen/ations), accuracy of positioning in the field
(differentially corrected GPS data is required) and appropriateness of the decision
process from objective measurements to the assignment of land cover category for the
station. Prospective change detection is the best way to go. Retrospective change
analysis is limited due to lack of appropriate surface level data required to assure, or
supplement the interpretation of the historical photography. Virtually all photography
will have some limitations - particularly coverage and visibility of unvegetated bottom
as depth increases to the limit of potentially vegetated bottom. Retrospective change
detection not only will be spatially restricted but also biased in favor of loss. Historical
loss will be more likely to be detected than historical gain because unequivocal
signatures (those identifiable by an interpreter experienced in the study area and not
requiring surface level verification) of vegetated bottom are more reliably obtained
than are signatures of unvegetated bottoms from historical photographs, in the
absence surface level verification.
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